Journal of Mathematical Sciences

, Volume 136, Issue 1, pp 3560–3563 | Cite as

An interpretation of the Vakulenko—Kapitansky estimate

  • T. A. Bolokhov
  • P. A. Bolokhov


Introducing a concept of twisted tubes, we provide a speculative interpretation of exponent 3/4 in the Vakulenko—Kapitansky estimate for the Faddeev—Skyrme model. This allows us to make an assumption about the domain of applicability of the fit derived from the VK estimate. We propose an example of a sequence of knotted configurations which may be utilized in construction of static solutions with high energies. Bibliography: 9 titles.


Static Solution Skyrme Model Speculative Interpretation Twisted Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Faddeev, “Quantization of solitons,” Preprint IAS, print-75-QS70 (1975).Google Scholar
  2. 2.
    A. J. Niemi, “Dual superconductors and SU(2) Yang—Mills,” JHEP (2004) 035; hep-th/0403175.Google Scholar
  3. 3.
    E. Babaev, L. D. Faddeev, and A. J. Niemi, Phys. Rev., B65 (2002).Google Scholar
  4. 4.
    L. D. Faddeev and A. Niemi, “Aspects of electric-magnetic duality in SU(2) Yang—Mills theory,” Phys. Lett., B525, 195–200 (2002).MathSciNetGoogle Scholar
  5. 5.
    A. F. Vakulenko and L. V. Kapitansky, Dokl. Akad. Nauk SSSR, 248, 840–842 (1979).Google Scholar
  6. 6.
    R. S. Ward, “The interaction of two Hopf solitons,” Phys. Lett., B473, 291–296 (2000).Google Scholar
  7. 7.
    J. Hietarinta and P. Salo, “Ground state in the Faddeev—Skyrme model,” Phys. Rev., D62.Google Scholar
  8. 8.
    M. Miettinen, A. Niemi, and Yu. Stroganov, “Aspects of duality and confining strings,” Phys. Lett., B474, 303–308 (2000); hep-th/9908178.MathSciNetGoogle Scholar
  9. 9.
    R. S. Ward, “Hopf solitons on S 3 and R 3,” DTP-98/55; hep-th/9811176.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • T. A. Bolokhov
    • 1
  • P. A. Bolokhov
    • 2
  1. 1.St. Petersburg Department of the Steklov Mathematical InstituteSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations