Journal of Mathematical Sciences

, Volume 133, Issue 4, pp 1464–1476 | Cite as

On Computer-Aided Solving Differential Equations and Studying Stability of Markets

  • D. Leites


For any nonholonomic manifold, i.e., a manifold with nonintegrable distribution, we define an analog of the Riemann curvature tensor and refer to Grozman's package SuperLie with the help of which the tensor had been computed in several cases. Being an analog of the usual curvature tensor, this invariant characterizes (in)stability of any nonholonomic dynamical system, in particular, of markets. Similar invariants give criteria for formal integrability of differential equations whose symmetries are induced by contact transformations similar to Goldshmidt's criteria for formal integrability of differential equations whose symmetries are induced by point transformations. As a byproduct, we obtain an approximate solution of the equation whose integrability is under study. Bibliography: 47 titles.


Differential Equation Manifold Dynamical System Approximate Solution Formal Integrability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Atiyah, A. Borel, G. J. Chaitin, D. Friedan, J. Glimm, J. Gray, M. Hirsch, S. Mac Lane, B. Mandelbrot, D. Ruelle, A. Schwarz, K. Uhlenbeck, R. Thom, E. Witten, and C. Zeeman, “Responses to: A. Jaffe and F. Quinn, “Theoretical mathematics: toward a cultural synthesis of mathematics and theoretical physics,” Bull. Amer. Math. Soc., 29, No. 1, 1–13 (1993),” Bull. Amer. Math. Soc., 30, No.2, 178–207 (1994).MathSciNetGoogle Scholar
  2. 2.
    A. Borisov and I. Mamaev, Poisson Structures and Lie Algebras in Hamiltonian Mechanics [in Russian], Udmurdsk Univ. Press, Izhevsk (1999).Google Scholar
  3. 3.
    R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior Differential Systems, Springer-Verlag, New York (1991).Google Scholar
  4. 4.
    R. L. Bryant, P. A. Griffiths, and D. Grossman, Exterior differential systems and Euler-Lagrange partial differential equations; arXiv:math.DG/0207039.Google Scholar
  5. 5.
    S. A. Chaplygin, Selected Works. Gas and Fluid Mechanics. Mathematics. General Mechanics [in Russian], Nauka, Moscow (1976).Google Scholar
  6. 6.
    V. Dragovic and B. Gajic, “The Wagner curvature tensor in nonholonomic mechanics,” Regul. Chaotic Dyn., 8, No.1, 105–124 (2003); arXiv:math-ph/0304018.CrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Singh, Fermat's Last Theorem, Fourth estate, London (1997).Google Scholar
  8. 8.
    A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace, Cambridge Univ. Press, Cambridge (2001).Google Scholar
  9. 9.
    S. Gindikin, Tales on Physicists and Mathematicians, Birkhauser Boston, Inc., Boston (1988); 3rd expanded edition: IUM, MCCME, Moscow (2001).Google Scholar
  10. 10.
    A. Goncharov, “Infinitesimal structures related to hermitian symmetric spaces,” Funkts. Anal. Prilozh., 15, No.3, 83–84 (1981).MATHMathSciNetGoogle Scholar
  11. 11.
    A. Goncharov, “Generalized conformal structures on manifolds,” Selecta Math. Sov., 6, No.4, 307–340 (1987).MATHMathSciNetGoogle Scholar
  12. 12.
    P. Grozman, SuperLie; Scholar
  13. 13.
    P. Grozman and D. Leites, “Supergravities and N-extended Minkowski superspaces for any N,” Lect. Notes Phys., 524, 58–67 (1999).MathSciNetGoogle Scholar
  14. 14.
    P. Grozman and D. Leites, “Mathematica-aided study of Lie algebras and their cohomology. From supergravity to ball bearings and magnetic hydrodynamics,” in: The Second International Mathematica Symposium, V. Keranen et al. (eds.), Rovaniemi (1997), pp. 185–192.Google Scholar
  15. 15.
    P. Grozman and D. Leites, “SuperLie and challenging computerizable problems (to be) solved with it,” Preprint MPIM-2003-39; Scholar
  16. 16.
    P. Grozman, D. Leites, and I. Shchepochkina, “The analogs of the Riemann tensor for exceptional structures on supermanifolds,” in: Proceedings of the International Conference “Fundamental Mathematics Today” (December 26–29, 2001) in honor of the 10th Anniversary of the Independent University of Moscow, S. K. Lando and O. K. Sheinman (eds.), IUM, MCCME, Moscow (2003), pp. 89–109; Preprint MPIM-2003-18; Scholar
  17. 17.
    H. Hertz, The Principles of Mechanics in New Relation, Dover, New York (1956).Google Scholar
  18. 18.
    Leonid Vitalievich Kantorovich: Man and Scientist, V. L. Kantorovich, S. S. Kutateladze, and I. Ya Fet (eds.), SO RAN Geo Publ. House, Novosibirsk (2002).Google Scholar
  19. 19.
    I. S. Krasilshchik, V. V. Lychagin, and A. N. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon and Breach Sci. Publ., New York (1986).Google Scholar
  20. 20.
    V. Kozlov, The Heat Equilibrium after Gibbs and Poincare [in Russian], Institute for Computer Research, Moscow-Izhevsk (2002).Google Scholar
  21. 21.
    D. Leites, “The Riemann tensor for nonholonomic manifolds,” Homology Homotopy Appl., 4, No.2, part 2 (2002), 397–407; arXiv:math.RT/0202213.MATHMathSciNetGoogle Scholar
  22. 22.
    Yu. I. Manin, Georg Cantor and his heritage; arXiv:math.AG/0209244.Google Scholar
  23. 23.
    D. Leites and E. Poletaeva, “Supergravities and contact type structures on supermanifolds,” Contemp. Math., 184, 267–274 (1995).MathSciNetGoogle Scholar
  24. 24.
    D. Leites, E. Poletaeva, and V. Serganova, “On Einstein equations on manifolds and supermanifolds,” J. Nonlinear Math. Phys., No. 4, 394–425 (2002); arXiv:math.DG/0306209.Google Scholar
  25. 25.
    D. Leites, V. Serganova, and G. Vinel, “Classical superspaces and related structures,” Lect. Notes Phys., 375, 286–297 (1991).MathSciNetGoogle Scholar
  26. 26.
    D. Leites and I. Shchepochkina, “How to quantize the antibracket,” Theoret. Math. Phys., 126, No.3, 339–369 (2001); Preprint ESI-875; Scholar
  27. 27.
    D. Leites and I. Shchepochkina, “Classification of the simple Lie superalgebras of vector fields,” Preprint MPIM-2003-28; Scholar
  28. 28.
    A. Nordmark and H. Essen, “Systems with a preferred spin direction,” R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455, 933–941 (1999).MathSciNetGoogle Scholar
  29. 29.
    E. Poletaeva, “Structure functions on the usual and exotic symplectic and periplectic supermanifolds,” Lect. Notes Phys., 375, 390–395 (1991).MATHMathSciNetGoogle Scholar
  30. 30.
    E. Poletaeva, “Analogs of Riemannian tensor on supermanifolds,” Prepring MPIM-2003-19.Google Scholar
  31. 31.
    I. Shchepochkina, “Exceptional simple infinite dimensional Lie superalgebras,” C. R. Acad. Sci. Bulg., 36, No.3, 313–314 (1983).MATHMathSciNetGoogle Scholar
  32. 32.
    I. Shchepochkina, “The five exceptional simple Lie superalgebras of vector fields”; arXiv:hep-th/9702120.Google Scholar
  33. 33.
    I. Schepochkina, “The five exceptional simple Lie superalgebras of vector fields,” Funct. Anal. Appl., 33, No.3, 208–219 (1999).MathSciNetGoogle Scholar
  34. 34.
    I. Schepochkina, “Five exceptional simple Lie superalgebras of vector fields and their fourteen regradings,” Represent. Theory, 3, 373–415 (1999).MathSciNetGoogle Scholar
  35. 35.
    V. Sergeev, The Wild East: Crime and Lawlessness in Post-Communist Russia, M. E. Sharp, Armonk, New York (1998).Google Scholar
  36. 36.
    V. Sergeev, The Limits of Rationality (A Thermodynamical Approach to Market Economy) [in Russian], Fasis, Moscow (1999).Google Scholar
  37. 37.
    S. Sternberg, Lectures on Differential Geometry, 2nd edition, Chelsey (1985).Google Scholar
  38. 38.
    N. Tanaka, “On infinitesimal automorphisms of Siegel domains,” J. Math. Soc. Japan, 22, 180–212 (1970).MATHMathSciNetGoogle Scholar
  39. 39.
    N. Tanaka, “On the equivalence problems associated with simple graded Lie algebras,” Hokkaido Math. J., 8, No.1, 23–84 (1979).MATHMathSciNetGoogle Scholar
  40. 40.
    A. M. Vershik, “Classical and nonclassical dynamics with constraints,” Lect. Notes Math., 1108, 278–301 (1984).MATHGoogle Scholar
  41. 41.
    A. M. Vershik and L. D. Faddeev, “Differential geometry and Lagrangian mechanics with constraints,” Sov. Phys. Dokl., 17, No.1, 34–36 (1972).Google Scholar
  42. 42.
    A. M. Vershik and L. D. Faddeev, “Lagrangian mechanics in an invariant form,” Selecta Math. Sov., 1, No.4, 339–350 (1981).Google Scholar
  43. 43.
    A. Vershik and V. Gershkovich, “Nonholonomic dinamical systems,” in: Dynamical Systems. VII. Encycl. Math. Sci., 16 (1994), pp. 1–81.Google Scholar
  44. 44.
    A. M. Vershik and V. Ya. Gershkovich, “A bundle of nilpotent Lie algebras over a nonholonomic manifold (nilpotentization),” Zap. Nauchn. Semin. LOMI, 172, 21–40 (1989).Google Scholar
  45. 45.
    J. Wess and J. Bagger, Supersymmetry and Supergravity, 2nd edition, Princeton Univ. Press, Princeton, New Jersey (1992).Google Scholar
  46. 46.
    K. Yamaguchi, “Differential systems associated with simple graded Lie algebras. Progress in differential geometry,” Adv. Stud. Pure Math., 22, 413–494 (1993).MATHGoogle Scholar
  47. 47.
    M. Zhitomirskii, Typical Singularities of Differential 1-Forms and Pfaffian Equations, Amer. Math. Soc., Providence, Rhode Island; in cooperation with Mir Publishers, Moscow (1992).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. Leites
    • 1
    • 2
  1. 1.Sophus-Lie-Professor, MPIMiSLeipzigGermany
  2. 2.University of StockholmSweden

Personalised recommendations