Journal of Mathematical Sciences

, Volume 131, Issue 3, pp 5614–5618 | Cite as

On the Estimation of Tails Parameters for Pareto and Exponential Distributions

  • H. Fellag
  • M. Ibazizen


Exponential Distribution Tail Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Balakrishnan and A. C. Cohen, Order Statistics and Inference: Estimation and Methods, Academic Press, Boston (1991).Google Scholar
  2. 2.
    J. Bartoszewicz, “On the most bias-robust linear estimates of the scale parameter of the exponential distribution,” Zastowania Mat., VIII, No.2, 251–255 (1984).MathSciNetGoogle Scholar
  3. 3.
    V. Brazauskas and R. Serfling, “Robust estimation of tail parameters for two-parameter Pareto and exponential models via generalized quantile statistics,” Extremes, 3, No.3, 231–249 (2000).CrossRefMathSciNetGoogle Scholar
  4. 4.
    S. S. Gupta, “Order statistics from gamma distribution,” Technometrics, 2, 243–262 (1960).MathSciNetMATHGoogle Scholar
  5. 5.
    S. S. Gupta, Gamma distribution, 431–450, Wiley, New York (1962).Google Scholar
  6. 6.
    E. L. Lehmann, Theory of Point Estimation, Wiley, New York (1983).Google Scholar
  7. 7.
    R. Zielinskii, “Robustness: a qualitative approach,” Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 25, 1281–1286 (1977).Google Scholar
  8. 8.
    R. Zielinskii, “A most bias-robust linear estimate of the scale parameter of the exponential distribution,” Zastosowania Mat., 18, 73–77 (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • H. Fellag
    • 1
  • M. Ibazizen
    • 1
  1. 1.Department of MathematicsUniversity of Tizi-OuzouTizi-OuzouAlgeria

Personalised recommendations