Advertisement

Journal of Mathematical Sciences

, Volume 129, Issue 1, pp 3642–3648 | Cite as

Classes of Maxwell Spaces Admitting Translations

  • M. A. Parinov
Article

Abstract

A Maxwell space is a pair (M4, F), where M4 is a four-dimensional Minkowski space or a domain in it and F is a closed exterior differential 2-form on M4. We describe classes of Maxwell spaces admitting translation groups of dimension 1–4.

Keywords

Minkowski Space Translation Group Maxwell Space Closed Exterior Space Admit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Bacry, P. Combe, and P. Sorba, “Connected subgroups of the Poincare group, I,” Rep. Math. Phys., 5, No.2, 145–186 (1974).CrossRefGoogle Scholar
  2. 2.
    H. Bacry, P. Combe, and P. Sorba, “Connected subgroups of the Poincare group, II,” Rep. Math. Phys., 5, No.3, 361–392 (1974).CrossRefGoogle Scholar
  3. 3.
    O. G. Belova, A. N. Zarembo, M. A. Parinov, O. O. Sergeeva, and Yu. G. Ugarova, “Classification of static electromagnetic fields by subgroups of the Poincare groups,” Nauch. Tr. Ivan. Univ., Ser. Mat., 3, 11–22 (2000).Google Scholar
  4. 4.
    I. V. Bel’ko, “Subgroups of the Lorentz-Poincare group,” Izv. Akad. Nauk Belorus. SSR, Ser. Fiz.-Mat. Nauk, 1, 5–13 (1971).Google Scholar
  5. 5.
    A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin (1987).Google Scholar
  6. 6.
    P. Combe and P. Sorba, “Electromagnetic fields with symmetries,” Physica A, 80, No.3, 271–286 (1975).Google Scholar
  7. 7.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and Applications [in Russian], Nauka, Moscow (1979).Google Scholar
  8. 8.
    A. S. Ivanova and M. A. Parinov, “First integrals of Lorentz equations for some classes of electromagnetic fields,” Tr. Mat. Inst. Steklova, 236, 197–203 (2002).Google Scholar
  9. 9.
    A. Janner and E. Ascher, “Space-time symmetry of linearly polarized electromagnetic plane waves,” Lett. Nuovo Cim., 2, No.15, 703–705 (1969).Google Scholar
  10. 10.
    A. Janner and E. Ascher, “Space-time symmetry of transverse electromagnetic plane waves,” Helv. Phys. Acta, 43, No.3, 296–303 (1970).Google Scholar
  11. 11.
    A. Janner and E. Ascher, “Relativistic symmetry groups of uniform electromagnetic fields,” Physica A, 48, No.3, 425–446 (1970).CrossRefGoogle Scholar
  12. 12.
    N. A. Kosheleva, A. K. Kuramshina, and M. A. Parinov, “Group classification of Maxwell spaces admitting elliptic helices,” Nauch. Tr. Ivan. Univ., Ser. Mat., 4, 73–82 (2001).Google Scholar
  13. 13.
    L. D. Landau and E. M. Lifshits, Field Theory [in Russian], Nauka, Moscow (1967).Google Scholar
  14. 14.
    D. A. L’vov and M. A. Parinov, “Group classification of Maxwell spaces admitting parabolic rotations,” Nauch. Tr. Ivan. Univ., Ser. Mat., 5, 51–62 (2002).Google Scholar
  15. 15.
    E. V. Morozova and M. A. Parinov, “Group classification of Maxwell spaces admitting translations along isotropic straight lines,” Nauch. Tr. Ivan. Univ,, Ser. Mat., 4, 87–94 (2001).Google Scholar
  16. 16.
    E. G. Morokhova, “Group classification of Maxwell spaces admitting proportional bi-rotations,” Nauch. Tr. Ivan. Univ., Ser. Mat., 5, 63–70 (2002).Google Scholar
  17. 17.
    M. A. Parinov, “Problem of group classification of electromagnetic fields,” in: Modern Methods of Function Theory and Related Topics [in Russian], Voronezh (1999), p. 156.Google Scholar
  18. 18.
    M. A. Parinov, “Group classification of Maxwell spaces,” in: Contemporary Analysis and Its Applications [in Russian], Voronezh (2000), p. 129–130.Google Scholar
  19. 19.
    A. I. Vorobiev, “Group classification of Maxwell spaces admitting hyperbolic helices,” Nauch. Tr. Ivan. Univ., Ser. Mat., 4, 35–42 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. A. Parinov
    • 1
  1. 1.Ivanovo State UniversityIvanovoRussia

Personalised recommendations