Advertisement

Journal of Mathematical Sciences

, Volume 128, Issue 4, pp 3121–3141 | Cite as

Raising Operators for the Whittaker Wave Functions of the Toda Chain and Intertwining Operators

  • A. Chervov
Article
  • 22 Downloads

Keywords

Wave Function Intertwining Operator Raising Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” In: Proc. RIMS Symp. Nonlinear Integrable Systems-Classical Theory and Quantum Theory, M. Jimbo and T. Miwa (Eds.), World Scientific, Singapore (1983), p. 39.Google Scholar
  2. 2.
    M. A. Olshanetsky and A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras,” Phys. Rept., 71 313–400 (1981).Google Scholar
  3. 3.
    M. Olshanetsky and A. Perelomov, “Quantum integrable systems related to Lie algebras,” Phys. Rept., 94 313–404 (1983).Google Scholar
  4. 4.
    J.-L. Verdier, “Algebras de Lie, systems Hamiltonienes, courbes algebriques,” In: Seminaire Bourbaki, 34-e annee, No. 566 (1980/81), pp. 1–10.Google Scholar
  5. 5.
    J.-L. Verdier, “Les representations des algebras de Lie affines: applications a quelques problemes de physique,” In: Seminaire Bourbaki, 34-e annee, No. 596 (1981/82), pp. 1–13.Google Scholar
  6. 6.
    A. Gorsky, “Integrable many body systems in the field theories,” Theor. Mat. Phys., 103 No.3 (1995).Google Scholar
  7. 7.
    M. Jimbo and T. Miwa, “Algebraic analysis of solvable lattice models,” In: Conference Board of the Math. Sci., Regional Conference Series in Mathematics, 85 (1995).Google Scholar
  8. 8.
    E. Frenkel, Five lectures on soliton equations, q-alg/9712005.Google Scholar
  9. 9.
    I. Cherednik, Lectures on Affine Knizhnik-Zamoldchikov Equations, Quantum Many-Body Problems, Hecke Algebras, and Macdonald Theory, Research Inst. Math. Studies (1998).Google Scholar
  10. 10.
    S. Kharchev, “ Kadomtsev-Petviashvili hierachy and generalized Kontsevich model,” hep-th/9810091.Google Scholar
  11. 11.
    V. Drinfeld and V. V. Sokolov, “Lie algebras and evolutions of KdV type,” J. Sov. Math., 30 1975–2036 (1985).Google Scholar
  12. 12.
    A. Pressley and G. Segal, Loop Groups, Clarendon Press, Oxford (1986).Google Scholar
  13. 13.
    V. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press, Cambridge (1990).Google Scholar
  14. 14.
    A. N. Leznov and M. V. Saveliev, Theory group methods for integrating non-linear dynamical systems [in Russian], Nauka, Moscow (1985).Google Scholar
  15. 15.
    P. Etingof, I. Frenkel, and A. Kirillov Representation Theory and the Kniznik-Zamolodchikov Equation, AMS, Providence, Rhode Island (1998).Google Scholar
  16. 16.
    A. Mironov, “Tau-function within group theory approach and its quantization,” hep-th/9711006.Google Scholar
  17. 17.
    A. Gerasimov, S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and M. Olshanetsky, “Liouville type models in group theory framework. I. Finite-dimensional algebras,” preprint FIAN/TD-18/95, ITEP M4/TH-7/95; hep-th/9601161.Google Scholar
  18. 18.
    A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, and A. Morozov, “Generalized Hirota equations and representation theory. I. The case of SL(2) and SLq(2),” Int. J. Mod. Phys., A10 2589–2614 (1995).Google Scholar
  19. 19.
    M. Golenisheva-Kutozova and D. Lebedev, Intertwining operators and soliton equations, hep-th/9805186.Google Scholar
  20. 20.
    A. Antonov and B. Feigin, “Quantum group representations and Baxter equation,” Phys. Lett., B392 115–122 (1997).Google Scholar
  21. 21.
    A. Tsuchiya and Y. Kanie, “Vertex operators in conformal field theory on P 1 and monodromy representations of braid group,” Adv. Stud. Pure Math., 16 297–372 (1988).Google Scholar
  22. 22.
    I. Frenkel and N. Reshetikhin, “Quantum affine algebras and holonomic difference equations,” Commun. Math. Phys., 146 No.1 (1992).Google Scholar
  23. 23.
    N. Vilenkin and A. Klimyk, Representations of Lie Groups and Special Functions, Kluwer Academic Publishers (1995).Google Scholar
  24. 24.
    J. Van der Jeugt and R. Jagannathan, “Realizations of su(1, 1) and U q(su(1, 1)) and generating functions for orthogonal polynomials,” math-ph/9807019.Google Scholar
  25. 25.
    O. I. Bogoyavlensky, “On perturbations of the periodic Toda lattice,” Comm. Math. Phys., 51 201–209 (1976).Google Scholar
  26. 26.
    M. Semenov-Tian-Shansky, “Quantization of the open Toda chains,” In: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Vol. 16 [in Russian], All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1987), pp. 194–226.Google Scholar
  27. 27.
    B. Kostant, “Whittaker vectors and representation theory,” Invent. Math., 48 101–184 (1978).Google Scholar
  28. 28.
    A. N. Kirillov and Masatoshi Noumi, “Affine Hecke algebras and raising operators for Macdonald polynomials,” q-alg/9605004.Google Scholar
  29. 29.
    A. N. Kirillov and Masatoshi Noumi, “q-Difference raising operators for Macdonald polynomials and the integrality of transition coefficients,” q-alg/9605005.Google Scholar
  30. 30.
    Luc Lapointe and Luc Vinet, “Creation operators for the Macdonald and Jack polynomials,” q-alg/9607024.Google Scholar
  31. 31.
    Luc Lapointe and Luc Vinet, “Rodrigues formulas for the Macdonald polynomials,” q-alg/9607025.Google Scholar
  32. 32.
    Yasushi Kajihara and Masatoshi Noumi, “Raising operators of row type for Macdonald polynomials,” math/9803151.Google Scholar
  33. 33.
    I. Gradshtein and I. Ryzhik, Tables of Integrals, Sums, Series and Products [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  34. 34.
    P. Etingof, “Whittaker functions on quantum groups and q-deformed Toda operators,” math. QA/9901053.Google Scholar
  35. 35.
    A. Sevostyanov, “The Whittaker model of the center of the quantum group and Hecke algebras,” math. QA/9904075.Google Scholar
  36. 36.
    V. Bazhanov, S. Lukyanov, and A. Zamolodchikov, “Integrable structure of conformal field theory I, II, III,” hep-th/9412229, hep-th/9604044, hep-th/9805008.Google Scholar
  37. 37.
    P. Etingof, “Integral formulas for wave functions of quantum many-body problems and representations of gl n,” hep-th/9405038.Google Scholar
  38. 38.
    B. L. Feigin and E. V. Frenkel, “Representations of affine Kac-Moody algebras and bosonization,” In: Physics and Mathematics of Strings. Knizhnik Memorial Volume, World Scientific, Singapore (1990), pp. 271–316.Google Scholar
  39. 39.
    G. Heckmann, “An elementary approach to the hypergeometric shift operators of Opdam,” Invent. Math., 98 341–350 (1991).Google Scholar
  40. 40.
    C. Dunkl, “Differential-difference operators associated with reflection groups,” Trans. Amer. Math. Soc., 311 No.1, 167–183 (1989).Google Scholar
  41. 41.
    E. Opdam, “Some applications of hypergeometric shift operators,” Invent. Math., 98 No.1, 1–18 (1989).Google Scholar
  42. 42.
    J. Denef and F. Loeser, “Character sums associated to. nite Coxeter groups,” math. AG/9803033.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. Chervov

There are no affiliations available

Personalised recommendations