Skip to main content
Log in

Solvability of Unilateral Parabolic Problems and Variational Inequalities

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Sufficient conditions are given for the existence of solutions of strong parabolic variational inequalities with nonlinear and multi-valued operators. Pseudomonotone operators are used. A new multi-valued analogue of the acute-angle lemma is used for the localization. The theory can be applied to problems with distributed parameters. We also consider conditions for the existence of strong generalized solutions of parabolic equations with unilateral boundary conditions with applications to control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. A. Arkhipova and N. N. Uraltseva, “Regularity of solutions of a problem for elliptic and parabolic equations with bilateral constraints on the boundary,” Tr. Mat. Inst. Steklov., 179, 5–22 (1987).

    Google Scholar 

  2. J. P. Aubin and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer, New York (1984).

    Google Scholar 

  3. V. Barbu, Analysis and Control of Nonlinear Infinite-Dimensional Systems, Academic Press, Boston (1995).

    Google Scholar 

  4. N. Bourbaki, Topological Vector Spaces [Russian translation], Inostr. Lit., Moscow (1959).

    Google Scholar 

  5. H. Brezis, “Equations et inequations non lineaires dans les espaces vectoriels en dualite,” Ann. Inst. Fourier, 18, 115–175 (1968).

    Google Scholar 

  6. F. E. Browder, “The fixed point theory of multivalued mappings in topological vector spaces,” Math. Ann., 177, 89–113 (1968).

    Article  Google Scholar 

  7. F. E. Browder and P. Hess, “Nonlinear mappings of monotone type in Banach spaces,” J. Funct. Anal., 11, No. 2, 251–294 (1972).

    Article  Google Scholar 

  8. S.-S. Chang, Yu-Q. Chen, and B. S. Lee, “Some existence theorems for differential inclusions in Hilbert spaces,” Bull. Austral. Math. Soc., 54, 317–327 (1996).

    Google Scholar 

  9. F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York (1998).

    Google Scholar 

  10. B. Cornet, “Existence of slow solutions for a class of differential inclusions,” J. Math. Anal. Appl., 96, 130–147 (1983).

    Article  Google Scholar 

  11. H. Debrunner and F. Flor, “Ein Erweiterungssatz fur monotone Mengen,” Arch. Math. 15, 445–447 (1964).

    Article  Google Scholar 

  12. Yu. A. Dubinskii, “Nonlinear elliptic and parabolic equations,” in: Itogi Nauki i Tekhn., Sovr. Probl. Mat., 9, All-Union Institute for Scientific and Technical Information, Moscow (1976), pp. 5–130.

    Google Scholar 

  13. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics [Russian translation], Nauka, Moscow (1980).

    Google Scholar 

  14. M. Fuchs, “Existence of solutions of nonlinear degenerated systems of parabolic variational inequalities,” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov, 221, 243–252 (1995).

    Google Scholar 

  15. Kh. Gaevsky, K. Greger, and K. Zakharias, Nonlinear Operator Equations and Operator-Differential Equations [Russian translation], Mir, Moscow (1978).

    Google Scholar 

  16. Z. Guan, A. G. Kartsatos, and I. V. Skrypnik, “Ranges of densely defined generalized pseudomonotone perturbations of maximal monotone operators,” J. Differ. Equat., 188, 332–351 (2003).

    Article  Google Scholar 

  17. P. Hartman and G. Stampacchia, “On some nonlinear elliptic differential functional equations,” Acta Math., 115, 271–310 (1966).

    Google Scholar 

  18. G. I. Laptev, “The first boundary-value problem for quasilinear second-order elliptic equations with double degeneration,” Differ. Uravn., 30, No.6, 1057–1068 (1994).

    Google Scholar 

  19. J.-L. Lions, Some Methods of Solution of Nonlinear Boundary Value Problems [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  20. J.-L. Lions and G. Stampacchia, “Variational inequalities,” Comm. Pure Appl. Math., XX, 493–519 (1967).

    Google Scholar 

  21. V. S. Mel’nik, “Multi-valued inequalities and operator inclusions in Banach spaces with operators of class (S +),” Ukr. Mat. Zh., 52, No.11, 1513–1523 (2000).

    Article  Google Scholar 

  22. V. S. Mel’nik and O. V. Solonukha, “On stationary variational inequalities with multi-valued operators,” Kibernet. Sistem. Anal., No. 3, 74–89 (1997).

    Google Scholar 

  23. V. S. Mel’nik and A. N. Vakulenko, “Topological method in the theory of operator inclusions with densely defined mappings in Banach spaces,” Nonlinear Boundary Value Problems, 11, 132–145 (2001).

    Google Scholar 

  24. V. S. Mel’nik and M. Z. Zgurovskii, Nonlinear Analysis and Control of Infinite-Dimensional Systems [in Russian], Naukova Dumka, Kiev (1999).

    Google Scholar 

  25. R. T. Rockafellar, “Local boundedness of nonlinear monotone operators,” Michigan Math. J., 16, 397–407 (1969).

    Article  Google Scholar 

  26. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, New York (1998).

    Google Scholar 

  27. I. V. Skrypnik, Methods for the Investigation of Nonlinear Elliptic Boundary-Value Problems [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  28. O. V. Solonoukha, “On the stationary variational inequalities with generalized pseudomonotone operators,” Methods of Functional Analysis and Topology, 3, No.4, 81–95 (1977).

    Google Scholar 

  29. O. V. Solonukha, “On solvability of monotone type problems with non-coercive set-valued operators,” Methods of Functional Analysis and Topology, 6, No.2, 66–72 (2000).

    Google Scholar 

  30. O. V. Solonukha, “On the existence of solutions of parabolic equations with monotone operators,” Naukovi Visti NTUU “KPI”,” No. 6, 137–146 (2001).

  31. O. V. Solonukha, “On surjectivity of noncoercive mappings: existence of solutions of equations, inclusions, and variational inequalities,” Dopovidi NAN Ukraini, No. 3, 31–37 (2003).

  32. O. V. Solonoukha, “On the existence of solutions of operator-differential inclusions and nonstationary variational inequalities,” Dopovidi NAN Ukraini, No. 4, 25–31 (2003).

  33. N. N. Uraltseva, “Existence of strong solutions of quasilinear parabolic equations with unilateral conditions on the boundary,” Vestnik Leningrad Univ., 13, 89–98 (1977).

    Google Scholar 

  34. M. Z. Zgurovskii and V. S. Melnik, “Ki Fang’s inequality and operator inclusions in Banach spaces,” Kibernet. Sistem. Anal., No. 2, 70–85 (2002).

Download references

Authors

Additional information

__________

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 24, pp. 250–303, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solonukha, O.V. Solvability of Unilateral Parabolic Problems and Variational Inequalities. J Math Sci 127, 2284–2314 (2005). https://doi.org/10.1007/s10958-005-0179-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-005-0179-y

Keywords

Navigation