Journal of Mathematical Sciences

, Volume 127, Issue 4, pp 2066–2072 | Cite as

Robustness of forecasting of autoregressive time series for additive distortions

  • D. V. Zenevich
  • Yu. S. Harin


Time Series Autoregressive Time Autoregressive Time Series Additive Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Abraham and J. Ledolter, Statistical Methods for Forecasting, Wiley, New York (1983).Google Scholar
  2. 2.
    C. A. Aivasyan, Bases of Applied Statistics and Econometrics [in Russian], UNITY, Moscow (1998).Google Scholar
  3. 3.
    T. W. Anderson, The Statistical Analysis of Time Series, Wiley, New York (1971).Google Scholar
  4. 4.
    R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York (1960).Google Scholar
  5. 5.
    H. Chen and C. Denie, “Parameter estimation for ARMA processes with errors in models,” Statist. Probab. Lett., 20, 91–99 (1994).CrossRefGoogle Scholar
  6. 6.
    F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust Statistics. The Approach Based on Influence Functions, Wiley, New York (1986).Google Scholar
  7. 7.
    P. J. Huber, Robust Statistics, Wiley, New York (1981).Google Scholar
  8. 8.
    Yu. S. Kharin, Robustness in Statistical Pattern Recognition, Kluwer Academic Publ., Dordrecht-Boston-London (1996).Google Scholar
  9. 9.
    Yu. S. Kharin and D. V. Zenevich, “Robustness of autoregressive forecasting under misspecified model,” Comp. Data Anal. Model., 1, 120–126 (1998).Google Scholar
  10. 10.
    H. Lutkepohl, Introduction to Multiple Time Series Analysis, Springer, Berlin (1993).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • D. V. Zenevich
    • 1
  • Yu. S. Harin
    • 1
  1. 1.MinskBelorussia

Personalised recommendations