Advertisement

Journal of Mathematical Sciences

, Volume 125, Issue 6, pp 751–824 | Cite as

On the local geometry of generic submanifolds of ℂ n and the analytic reflection principle (part I)

  • Joël Merker
Article

Keywords

Reflection Local Geometry Reflection Principle Analytic Reflection Generic Submanifolds 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Baouendi, M. S., Ebenfelt, P., Rothschild, L. P. 1999Real Submanifolds in Complex Space and Their MappingsPrinceton University PressPrinceton, NJGoogle Scholar
  2. 2.
    Bellaïche, A. 1996Sub-Riemannian geometryProgress in MathematicsBirkhäuser VerlagBasel, Switzerland178Google Scholar
  3. 3.
    Cartan, É. 1932Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, IAnn. Mat.111790Google Scholar
  4. 4.
    Cartan, É. 1932Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, IIAnn. Scuola Norm. Sup. Pisa1333354Google Scholar
  5. 5.
    Chern, S. S., Moser, J. K. 1974Real hypersurfaces in complex manifoldsActa Math.133219271MATHGoogle Scholar
  6. 6.
    Chirka, E. M. 1989Complex analytic setsMathematics and Its ApplicationsKluwer Academic PublishersDordrechtSoviet SeriesGoogle Scholar
  7. 7.
    Chirka, E. M. 1991An introduction to the geometry of CR manifoldsUspekhi Mat. Nauk4681164English transl.: Russian Math. Surveys, 46, No. 1, 95–197 (1991).Google Scholar
  8. 8.
    Diederich, K., Fornæss, J. E. 1988Proper holomorphic mappings between real-analytic pseudoconvex domains in ℂ n Math. Ann282681700Google Scholar
  9. 9.
    Diederich, K., Webster, S. M. 1980A reflection principle for degenerate real hypersurfacesDuke Math. J.47835843Google Scholar
  10. 10.
    Fefferman, C. 1974The Bergman kernel and biholomorphic mappings of pseudoconvex domainsInvent. Math.26165Google Scholar
  11. 11.
    M.Freeman, “Real submanifolds with degenerate Levi form, Several complex variables,” in: Proc. Sympos. Pure Math., Vol. XXX, Williams Coll., Williamstown, Mass. (1975), Part 1, Amer. Math. Soc., Providence, R.I. (1977), pp. 141–147.Google Scholar
  12. 12.
    Han, C. K. 1983Analyticity of CR equivalences between some real analytic hypersurfaces in ℂ n with degenerate Levi-formsInvent. Math.735169Google Scholar
  13. 13.
    Hartogs, F. 1906Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere ¨ber die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreitenMath. Ann.62188Google Scholar
  14. 14.
    Henkin, G. M., Tumanov, A. E. 1983Local characterization of holomorphic automorphisms of Siegel domainsFunkts. Anal. Prilozhen.174961Google Scholar
  15. 15.
    Kruzhilin, N. G. 1986Description of the local automorphism groups of real hypersurfacesProceedings of the International Congress of Mathematicians1749758Google Scholar
  16. 16.
    Levi, E. E. 1910Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesseAnnal. Mat.176187Google Scholar
  17. 17.
    H. Lewy, “On the boundary behaviour of holomorphic mappings,” Contrib. Centro Linceo Inter. Sc. Mat. Loro Appl., No. 35, Accad. Naz. Lincei, 1–8 (1977).Google Scholar
  18. 18.
    Lie, S. 1880Theorie der transformationsgruppenMath. Ann.16441528Google Scholar
  19. 19.
    Merker, J. 2001On the partial algebraicity of holomorphic mappings between two real algebraic sets in the complex euclidean spaces of different dimensionsBull. Soc. Math. France129547591Google Scholar
  20. 20.
    Pinchuk, S. 1974A boundary uniqueness theorem for holomorphic functions of several complex variablesMat. Zametki15205212Google Scholar
  21. 21.
    Pinchuk, S. 1974On proper holomorphic mappings of strictly pseudoconvex domainsSib. Mat. Zh.15909917Google Scholar
  22. 22.
    Pinchuk, S. 1975On the analytic continuation of holomorphic mappingsMat. Sb.98416435English transl.: Math. USSR Sbornik, 27, 375–392 (1975)Google Scholar
  23. 23.
    Pinchuk, S. 1978Holomorphic mappings of real-analytic hypersurfacesMat. Sb.105574593English transl.: Math. USSR Sbornik, 34, 503–519 (1978)Google Scholar
  24. 24.
    Poincaré, H. 1907Les fonctions analytiques de deux variables et la représentation conformeRend. Circ. Mat. Palermo, II. Ser23185220Google Scholar
  25. 25.
    Segre, B. 1931Intorno al problema di Poincaré della rappresentazione pseudoconformeRend. Acc. Lincei, VI, Ser.13676683Google Scholar
  26. 26.
    Beniamino Segre, “Questioni geometriche legate colla teoria delle funzioni di due variabili complesse,” Rend. Sem. Mat. Roma, II (memorie), Ser. 7, No. 2, 59–107 (1932).Google Scholar
  27. 27.
    Sharipov, R., Sukhov, A. 1996On CR mappings between algebraic Cauchy-Riemann manifolds and separate algebraicity for holomorphic functionsTrans. Amer. Math. Soc.348767780Google Scholar
  28. 28.
    Stanton, N. 1996Infinitesimal CR automorphisms of real hypersurfacesAmer. J. Math.118209233Google Scholar
  29. 29.
    Stormark, O. 2000Lie’s structural approach to PDE systemsEncyclopædia of Mathematics and Its ApplicationsCambridge University PressCambridgeGoogle Scholar
  30. 30.
    Sukhov, A. 1994On CR mappings of real quadric manifoldsMichigan Math. J.41143150Google Scholar
  31. 31.
    Sukhov, A. 2001Segre varieties and Lie symmetriesMath. Z.238483492Google Scholar
  32. 32.
    Sussmann, H. J. 1973Orbits of families of vector fields and integrability of distributionsTrans. Amer. Math. Soc.180171188Google Scholar
  33. 33.
    Vitushkin, A. G. 1990Holomorphic mappings and the geometry of hypersurfacesEncyclopædia of Mathematical Sciences7159214Several Complex Variables, I, Springer-Verlag, BerlinGoogle Scholar
  34. 34.
    Webster, S. M. 1977On the mapping problem for algebraic real hypersurfacesInvent. Math.435368Google Scholar
  35. 35.
    Webster, S. M. 1978On the reflection principle in several complex variablesProc. Amer. Math. Soc.712628Google Scholar
  36. 36.
    Webster, S. M. 1982Holomorphic mappings of domains with generic cornersProc. Amer. Math. Soc.86236240Google Scholar
  37. 37.
    S. M. Webster, “Real submanifolds of ℂn and their complexifications,” Topics in Several Complex Variables, Mexico (1983), pp. 69–79. Res. Notes in Math., Vol. 112, Pitman, Boston (1985).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Joël Merker
    • 1
  1. 1.CNRS, Université de ProvenceMarseilleFrance

Personalised recommendations