Skip to main content
Log in

Kumpera-Ruiz algebras in Goursat flags are optimal in small lengths

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2005

Abstract

Kumpera-Ruiz algebras of germs of Goursat distributions are nilpotent algebras with explicitly computable orders of nilpotence. At some points, called tangential, these orders coincide with the nonholonomy degrees (calculated earlier by Jean) of the ambient G. germs. At nontangential points (that mostly occur and are stratified into geometric classes of Jean, Montgomery, and Zhitomirskii), nonholonomy degrees are lesser, sometimes even much lesser. It is a well-known open question in the theory of G. distributions: whether Kumpera-Ruiz algebras realize the minimal possible nilpotence orders or not. In the present paper, in small lengths of the induced G. flags (up to 5 inclusively) and also for 8 nontangential classes in length 6 (among 18 nontangential existing in this length 6), we show that the answer to this question is affirmative: the nilpotence orders of Kumpera-Ruiz algebras cannot be lowered. This makes more probable that a general answer to the question is affirmative in the general case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. A. Agrachev, R. V. Gamkrelidze, and A. V. Sarychev, “Local invariants of smooth control systems,” Acta Appl. Math., 14, 191–237 (1989).

    Article  Google Scholar 

  2. A. A. Agrachev and J.-P. Gauthier, On subanalyticity of Carnot-Carathéodory distances, Ann. Inst. H. Poincaré, 18, 359–382 (2001).

    Google Scholar 

  3. A. Bellïche, “The tangent space in sub-Riemannian geometry,” in: Sub-Riemannian Geometry (A. Bellïche and J.-J. Risler, Eds.), Birkhäuser, Basel-Berlin (1996), pp.1–78.

    Google Scholar 

  4. R. M. Bianchini and G. Stefani, “Graded approximations and controllability along a trajectory,” SIAM J. Control Optimiz., 28, 903–924 (1990).

    Article  Google Scholar 

  5. A. Bressan, “Nilpotent approximations and optimal trajectories,” in: Analysis of Controlled Dynamical Systems, Progr. Systems Control Theory, 8 Birkhäuser, Basel-Berlin (1991), pp.103–117.

    Google Scholar 

  6. R. Bryant and L. Hsu, “Rigidity of integral curves of rank 2 distributions,” Invent. Math., 114, 435–461 (1993).

    Article  Google Scholar 

  7. M. Cheaito and P. Mormul, “Rank-2 distributions satisfying the Goursat condition: all their local models in dimension 7 and 8,” ESAIM: Control, Optimization and Calculus of Variations, 4, 137–158 (1999); http://www. edpsciences.org/cocv/

    Google Scholar 

  8. H. Hermes, “Nilpotent approximations of control systems and distributions,” SIAM J. Control Optimiz., 24, 731–736 (1986).

    Article  Google Scholar 

  9. H. Hermes, “Nilpotent and high-order approximations of vector field systems,” SIAM Review, 33, 238–264 (1991).

    Article  Google Scholar 

  10. H. Hermes, A. Lundell, and D. Sullivan, “Nilpotent bases for distributions and control systems,” J. Differ. Equations, 55, 385–400 (1984).

    Article  Google Scholar 

  11. F. Jean, “The car with N trailers: characterisation of the singular configurations,” ESAIM: Control, Optimization and Calculus of Variations, 1, 241–266 (1996); http://www.edpsciences.org/cocv/

    Google Scholar 

  12. A. Kumpera and J. L. Rubin, “Multi-flag systems and ordinary differential equations,” Nagoya Math.J., 166, 1–27 (2002).

    Google Scholar 

  13. A. Kumpera and C. Ruiz, “Sur l’équivalence locale des systèmes de Pfaff en drapeau,”in: Monge-Ampère Equations and Related Topics (F. Gherardelli, Ed.), Inst. Alta Math. F. Severi, Rome (1982), pp. 201–248.

    Google Scholar 

  14. G. Lafferriere and H. J. Sussmann, “A differential geometric approach to motion planning,” in: Nonholonomic Motion Planning (F. J. Canny and Z. Li, Eds.), Kluwer, Dordrecht-London (1993), pp. 235–270.

    Google Scholar 

  15. Mathematical Encyclopaedia, Vol.3 [in Russian], I. M. Vinogradov (Main Editor), Soviet Encyclopaedia, Moscow (1982).

    Google Scholar 

  16. R. Montgomery and M. Zhitomirskii, “Geometric approach to Goursat flags,” Ann. Inst. H. Poincaré, 18, 459–493 (2001).

    Article  Google Scholar 

  17. P. Mormul, “Local classification of rank-2 distributions satisfying the Goursat condition in dimension 9,” in: Singularités et Géométrie sous-riemannienne (P. Orro et F. Pelletier, Eds.), Collection Travaux en cours, 62, Hermann, Paris (2000), pp.89–119.

    Google Scholar 

  18. P. Mormul, Simple codimension-two singularities of Goursat flags, I: One flag’s member in singular position, Preprint 01-01(39), Institute of Mathematics, Warsaw University (2001); http://www.mimuw.edu.pl/english/research/reports/tr-imat/

  19. P. Mormul, “Discrete models of codimension-two singularities of Goursat flags of arbitrary length with one flag’s member in singular position,” Proc. Steklov Inst. Math., 236, 478–489 (2002).

    Google Scholar 

  20. P. Mormul, “Goursat distributions not strongly nilpotent in dimensions not exceeding seven,” in: Nonlinear and Adaptive Control NCN4 2001 (A. Zinober and D. Owens, Eds.), Lect. Notes Control Information Sci., 281 Springer-Verlag, Berlin-New York (2003), pp. 249–261.

    Google Scholar 

  21. P. Mormul, Multi-dimensional Cartan prolongation and special k-flags, Preprint 02-06(58), Institute of Mathematics, Warsaw University (2002); http://www.mimuw.edu.pl/english/research/reports/tr-imat/

  22. P. Mormul and F. Pelletier, “Contrôlabilité complète par courbes anormales par morceaux d’une distribution de rang 3 générique sur des variétés connexes de dimension 5 et 6,” Bull. Polish Acad. Sci., Ser. Math., 45, 399–418 (1997).

    Google Scholar 

  23. R. M. Murray, “Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems,” Math. Control Signals Syst., 7, 58–75 (1994).

    Article  Google Scholar 

  24. W. Pasillas-Lépine and W. Respondek, “Nilpotentization of the kinematics of the n-trailer system at singular points and motion planning through the singular locus,” Int. J. Control, 74, 628–637 (2001).

    Article  Google Scholar 

  25. W. Pasillas-Lépine and W. Respondek, “Contact systems and corank one involutive subdistributions,” Acta Appl. Math., 69, 105–128 (2001).

    Article  Google Scholar 

  26. C. Rockland, “Intrinsic nilpotent approximations,” Acta Appl. Math., 8, 213–270 (1987).

    Article  Google Scholar 

  27. L. P. Rothschild and E. M. Stein, “Hypoelliptic differential operators and nilpotent groups,” Acta Math., 137, 247–320 (1976).

    Google Scholar 

  28. Yu. L. Sachkov, “On nilpotent sub-Riemannian (2, 3, 5) problem,” in: Workshop Math. Control Theory and Robotics, Trieste (2000).

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10958-005-0347-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mormul, P. Kumpera-Ruiz algebras in Goursat flags are optimal in small lengths. J Math Sci 126, 1614–1629 (2005). https://doi.org/10.1007/s10958-005-0051-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-005-0051-0

Keywords

Navigation