Journal of Mathematical Sciences

, Volume 100, Issue 4, pp 2428–2445 | Cite as

Morse lemmas for smooth functions on manifolds with corners

  • S. A. Vakhrameev


Manifold Optimal Control Problem Lower Semicontinuous Smooth Manifold Multivalued Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Agrachev, D. Palaschke, and S. Scholtes, “On Morse theory for piecewise smooth functions”, J. Dyn. Contr. Syst., 3, No. 4, 449–469 (1997).MATHGoogle Scholar
  2. 2.
    A. A. Agrachev and S. A. Vakhrameev, “Morse theory in optimal control theory and mathematical programming”, in: Int. Soviet-Poland Symp. “Math. Meth. Optimal Control and Appl.”, Minsk, May 16–19, 1989, Abstracts of Reports [in Russian], Minsk (1989), pp. 7–8.Google Scholar
  3. 3.
    A. A. Agrachev and S. A. Vakhrameev, “Morse theory and optimal control problems”, in: Nonlinear Synthesis, Progress in System and Control Theory, Vol. 9, Birkhauser Verlag, Boston (1991), pp. 1–11.Google Scholar
  4. 4.
    N. A. Bobylev and Yu. M. Burman, “Morse lemmas for integral functionals”, Dokl. Akad. Nauk SSSR, 317, No. 2, 267–270 (1991).MathSciNetGoogle Scholar
  5. 5.
    J. M. Bonnisseau and B. Cornet, “Fixed point theorems and Morse’s lemma for Lipschitzian functions”, J. Math. Anal. Appl., 146, 318–332 (1990).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. L. Bougeard, “Morse theory for some lower C 2-functions in finite dimension”, Math. Progr., 41, 141–159 (1988).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Sh. Farber, “On smooth sections of the intersection of multivalued mappings”, Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 6, 23–28 (1979).MathSciNetGoogle Scholar
  8. 8.
    M. Goretsky and R. McPherson, Stratified Morse Theory, Springer, Berlin (1988).Google Scholar
  9. 9.
    J. Milnor, Morse Theory, Princeton Univ. Press (1963).Google Scholar
  10. 10.
    R. S. Palais, “Morse theory on Hilbert manifolds”, Topology, 2, No. 4, 299–341 (1963).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. S. Palais, “The Morse lemma for Banach spaces”, Bull. Amer. Math. Soc., 15, 185–212 (1970).MathSciNetGoogle Scholar
  12. 12.
    R. S. Palais and S. Smale, “A generalized Morse theory”, Bull. Amer. Math. Soc., 70, 165–171 (1964).MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    I. V. Skrypnik, Nonlinear Elliptic Equations of High Order [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  14. 14.
    A. Tromba, “Morse lemma in Banach spaces”, Proc. Amer. Math. Soc., 34, 396–402 (1972).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Tromba, “The Morse lemma on arbitrary Banach spaces”, Bull. Amer. Math. Soc., 79, 85–86 (1973).MATHMathSciNetGoogle Scholar
  16. 16.
    S. A. Vakhrameev, “Hilbert manifolds with corners of finite codimension and optimal control theory”, in: Progress in Science and Technology, Series on Algebra, Topology, Geometry, Vol. 28 [in Russian], VINITI, Akad. Nauk SSSR (1990), pp. 96–171.Google Scholar
  17. 17.
    S. A. Vakhrameev, “Palais-Smale theory for manifolds with corners, I. Finite-codimensional case”, Usp. Mat. Nauk, 45, No. 4, 141–142 (1990).MathSciNetGoogle Scholar
  18. 18.
    S. A. Vakhrameev, “Morse index theorem for extremals of certain optimal control problems”, Dokl. Akad. Nauk SSSR, 317, No. 1, 11–15 (1991).MathSciNetGoogle Scholar
  19. 19.
    S. A. Vakhrameev, “Morse theory and Lyusternik-Shnirel’man theory in geometrical control theory”, in: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Latest Achievements, Vol. 39, [in Russian], VINITI, Akad. Nauk SSSR, Moscow (1991), pp. 41–117.Google Scholar
  20. 20.
    S. A. Vakhrameev, “Lyusternik-Shnirel’man theory for transversely convex subsets of Hilbert manifolds and its application to optimal control theory”, Dokl. Akad. Nauk SSSR, 319, No. 1, 18–21 (1991).MathSciNetGoogle Scholar
  21. 21.
    S. A. Vakhrameev, “Morse theory for a certain class of optimal control problems”, Dokl. Ross. Akad. Nauk, 326, No. 3, 404–408 (1992).Google Scholar
  22. 22.
    S. A. Vakhrameev, “Critical point theory for smooth functions on Hilbert manifolds with signularities and its application to some optimal control problems”, J. Sov. Math., 67, No. 1, 2713–2811 (1993).CrossRefMathSciNetGoogle Scholar
  23. 23.
    S. A. Vakhrameev, “On the transversal convexity of reachable sets of a certain class of smooth nonlinear systems”, Dokl. Ross. Akad. Nauk, 338, No. 1, 1–3 (1994).Google Scholar
  24. 24.
    S. A. Vakhrameev, “Geometrical and topological methods in optimal control theory”, J. Math. Sci., 76 No. 5, 2755–2719 (1995).MathSciNetCrossRefGoogle Scholar
  25. 25.
    F. W. Warner, Foundation of Differential Manifolds and Lie Groups, Springer, New York (1983).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • S. A. Vakhrameev

There are no affiliations available

Personalised recommendations