Strong Local Optimality for a Bang–Bang–Singular Extremal: General Constraints

Abstract

The paper provides second-order sufficient conditions for the strong local optimality of bang–bang–singular extremals in a Mayer problem with general end point constraints. The sufficient conditions are expressed as a strengthening of the necessary ones plus the coerciveness of a suitable quadratic form related to a sub-problem of the given one. The sufficiency of the given conditions is proven via Hamiltonian methods.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Poggiolini, L., Stefani, G.: Strong local optimality for a bang-bang-singular extremal: the fixed-free case. SIAM J. Control Optim. 56(3), 2274–2294 (2018). https://doi.org/10.1137/17M1140248

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Poggiolini, L., Stefani, G.: Constrained bang-bang-singular extremals. In: CDC 2019 Proceedings. IEEE (2019)

  3. 3.

    Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint. Springer, Berlin (2004)

    Google Scholar 

  4. 4.

    Agrachev, A.A., Stefani, G., Zezza, P.: Strong optimality for a bang–bang trajectory. SIAM J. Control Optim. 41(4), 991–1014 (2002)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Poggiolini, L., Stefani, G.: State-local optimality of a bang-bang trajectory: a Hamiltonian approach. Syst. Control Lett. 53, 269–279 (2004)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Poggiolini, L., Spadini, M.: Strong local optimality for a bang–bang trajectory in a Mayer problem. SIAM J. Control Optim. 49(1), 140–161 (2011). https://doi.org/10.1137/090771405

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Poggiolini, L., Spadini, M.: Bang–bang trajectories with a double switching time in the minimum time problem. ESAIM: COCV (2015). https://doi.org/10.1051/cocv/2015021

  8. 8.

    Stefani, G.: Strong optimality of singular trajectories. In: Ancona, F., Bressan, A., Cannarsa, P., Clarke, F., Wolenski, P. R. (eds.) Geometric Control and Nonsmooth Analysis, Series on Advances in Mathematics for Applied Sciences, vol. 76, pp. 300–326. World Scientific Publishing Co. Pte. Ltd., Hackensack (2008). Pp. 361 ISBN: 978-981-277-606-8

  9. 9.

    Poggiolini, L., Stefani, G.: Bang-singular-bang extremals: sufficient optimality conditions. J. Dyn. Control Syst. 17, 469–514 (2011). https://doi.org/10.1007/s10883-011-9127-y

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Chittaro, F.C., Stefani, G.: Singular extremals in multi-input time-optimal problem: a sufficient condition. Control Cybernet. 39(4), 1029–1068 (2010)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Chittaro, F.C., Stefani, G.: Minimum-time strong optimality of a singular arc: the multi-input non involutive case. ESAIM COCV 22(3), 786–810 (2016). https://doi.org/10.1051/cocv/2015026

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Agrachev, A.A., Biolo, C.: Switching in time-optimal problem with control in a ball. SIAM J. Control Optim. 56(1), 183–200 (2018). https://doi.org/10.1137/16M110304X

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Agrachev, A.A., Biolo, C.: Optimality of broken extremals. J. Dyn. Control Syst. 25(2), 289–307 (2019). https://doi.org/10.1007/s10883-018-9416-9

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Caillau, J.B., Orieux, M.: Sufficient conditions for time optimality of systems with control on the disk. In: CDC 2019 Proceedings. IEEE (2019)

  15. 15.

    Caillau, J.-B., Fejoz, J., Orieux, M., Roussarie, R.: Singularities of min time affine control systems. (2018). https://hal.inria.fr/hal-01718345

  16. 16.

    Maurer, H., Osmolovskii, N.: Second-order conditions for optimal control problems with mixed control-state constraints and control appearing linearly. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), IEEE Conference on Decision and Control, pp. 514–519 (2013)

  17. 17.

    Aronna, M.S., Bonnans, J.F., Dmitruk, A.V., Lotito, P.A.: Quadratic order conditions for bang–singular extremals. Numer. Algebra Control Optim. 2(3), 511–546 (2012). https://doi.org/10.3934/naco.2012.2.511

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Bonnard, B., Caillau, J.B., Trélat, E.: Second order optimality conditions in the smooth case and applications in optimal control. ESAIM COCV 13(2), 207–236 (2007). https://doi.org/10.1051/cocv:2007012

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Hilscher, R.S., Zeidan, V.: Sufficiency and sensitivity for nonlinear optimal control problems on time scales via coercivity. ESAIM COCV 24(4), 1705–1734 (2018). https://doi.org/10.1051/cocv/2017070

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Vossen, G.: Switching time optimization for bang–bang and singular controls. J. Optim. Theory Appl. 144(2), 409–429 (2010). https://doi.org/10.1007/s10957-009-9594-4

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Agrachev, A.A., Stefani, G., Zezza, P.: Symplectic methods for strong local optimality in the bang-bang case. In: Anzaldo-Meneses, J.G.A., Bonnard, B., Monroy-Perez, F. (eds.) Contemporary Trends in Non-linear Geometric Control Theory and Its Applications. World Scientific, London (2002)

    Google Scholar 

  22. 22.

    Stefani, G., Zezza, P.: Variational Methods in Imaging and Geometric Control, chap. A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I. De Gruyter, Berlin (2016)

  23. 23.

    Agrachev, A.A., Stefani, G., Zezza, P.: An invariant second variation in optimal control. Int. J. Control 71(5), 689–715 (1998)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Stefani, G., Zezza, P.: Constrained regular LQ-control problems. SIAM J. Control Optim. 35(3), 876–900 (1997)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Hestenes, M.R.: Applications of the theory of quadratic forms in Hilbert space to calculus of variations. Pacific J. Math. 1, 525–581 (1951)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Maurer, H.: Theory and applications of bang–bang and singular control problems. In: Conference Slides (2007). 23rd IFIP TC 7 Conference on System Modelling and Optimization Kraków, Poland, July 23–27, 2007

  27. 27.

    Felgenhauer, U., Poggiolini, L., Stefani, G.: Optimality and stability result for bang-bang optimal controls with simple and double switch behaviour. Control Cybernet. 38(4B), 1305–1325 (2009)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Poggiolini, L., Stefani, G.: Structural stability for bang-singular-bang extremals in the minimum time problem. SIAM J. Control Optim. 51(5), 3511–3531 (2013). https://doi.org/10.1137/120895421

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Poggiolini, L., Stefani, G.: A case study in strong optimality and structural stability of bang-singular extremals. In: Stefani, G., Boscain, U., Gauthier, J.P., Sarychev, A., Sigalotti, M. (eds.) Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Series, vol. 5, pp. 333–350. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-02132-4_19

    Google Scholar 

  30. 30.

    Poggiolini, L.: Structural stability of bang-bang trajectories with a double switching time in the minimum time problem. SIAM J. Control Optim. 55(6), 3779–3798 (2017). https://doi.org/10.1137/16M1083761

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the partial support given by INDAM-GNAMPA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura Poggiolini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Aram Arutyunov.

Appendices

Appendices

Computation of the Extended Second Variation

Problem (15) can be written as

$$\begin{aligned}&\text {minimize } \varDelta C(y, \delta \upsilon _0, \delta \upsilon ) := \left( \widehat{\alpha }(y) + \beta (\eta (T))\right) - \left( \widehat{\alpha }({\widehat{x}}_T) + \beta ({\widehat{x}}_T)\right) \ \text { subject to} \nonumber \\&{\dot{\eta }}(t) = \varphi _t(\eta (t)) := {\left\{ \begin{array}{ll} \delta \upsilon _0(t) k_1(\eta (t)), \qquad &{} t \in ]0, {\widehat{\tau }}_{1}[ , \\ \delta \upsilon _0(t) k_2(\eta (t)), \quad &{} t \in ]{\widehat{\tau }}_{1}, {\widehat{\tau }}_{2}[ , \\ \delta \upsilon (t) g_{t}(\eta (t)), \quad &{} t \in ]{\widehat{\tau }}_{2}, T[ , \end{array}\right. } \nonumber \\&\delta \upsilon _0(t) > -1, \ \int _0^{{\widehat{\tau }}_{2}} \delta \upsilon _0(t) {\text {d}}t = 0, \;\; \left| \delta \upsilon (t)\right| < \delta , \quad \eta (0) = y \in \widehat{N}_0 , \;\; \eta (T) = x \in N_T. \end{aligned}$$
(41)

We can allow for the controls \(\delta \upsilon _0\), \(\delta \upsilon \) to be in \(L^2 := L^2([0, T], {\mathbb {R}}) \) since equation (41) is linear with respect to the controls. Defining

$$\begin{aligned}&\gamma :y \in {{\mathbb {R}}}^n\mapsto \left( \widehat{\alpha }+ \beta \right) (y) - \left( \widehat{\alpha }+ \beta \right) ({\widehat{x}}_T) \in {\mathbb {R}}, \\&{\mathcal {L}}:(t, y, \delta \upsilon _0, \delta \upsilon ) \in [0,T ]\times {{\mathbb {R}}}^n\times L^2 \times L^2 \mapsto {\mathcal {L}}_t( y, \delta \upsilon _0, \delta \upsilon ) := \langle {{\text {d}}\beta (y)} \, , \, {\varphi _t(y)} \rangle \in {\mathbb {R}}\end{aligned}$$

we get

$$\begin{aligned} \varDelta C(y, \delta \upsilon _0, \delta \upsilon ) := \gamma (y) + \int _0^T {\mathcal {L}}_t(\eta (t), \delta \upsilon _0(t), \delta \upsilon (t)){\text {d}}t . \end{aligned}$$

We aim at computing the second-order approximation \(C^{\prime \prime }\) of \(\varDelta C\).

By the properties of \(\gamma \), the constraint on \(\delta \upsilon _0\), and PMP it is not difficult to see that

Thus, the first-order approximation is null and the second-order approximation is intrinsically well defined. Obviously,

$$\begin{aligned} \partial ^2_{yy} C({\widehat{x}}_T, 0,0) = {\text {D}}^2\gamma ({\widehat{x}}_T). \end{aligned}$$

Denote as \({\mathcal {L}}^{\prime \prime }_t\) the second-order derivative of \({\mathcal {L}}_t\) at \(({\widehat{x}}_T, 0,0)\) and let \(\delta \eta \) be the linearization of \(\eta \), i.e. \(\delta \eta \) solves the problem

$$\begin{aligned} \dot{\delta \eta }(t) = \varphi _t({\widehat{x}}_T), \quad \delta \eta (0) = \delta y\in T_{{\widehat{x}}_T}\widehat{N}_0, \quad \delta \eta (T) = {\delta x}\in T_{{\widehat{x}}_T} N_T. \end{aligned}$$
(42)

Hence

$$\begin{aligned} 2 \, C^{\prime \prime }[\delta y, \delta \upsilon _0, \delta \upsilon ]^2 = {\text {D}}^2\gamma ({\widehat{x}}_T)[\delta y]^2 + \int _0^T {\mathcal {L}}^{\prime \prime }_t[\delta \eta (t), \delta \upsilon _0(t), \delta \upsilon (t)]^2 {\text {d}}t . \end{aligned}$$

For the sake of computations, let us define

$$\begin{aligned} I_1(\delta y, \delta \upsilon _0)&:= \int _0^{{\widehat{\tau }}_{1}}{\mathcal {L}}^{\prime \prime }_t[\delta \eta (t), \delta \upsilon _0(t),0]^2{\text {d}}t = 2\int _0^{{\widehat{\tau }}_{1}} \delta \upsilon _0(t) L_{\delta \eta (t)}L_{k_1}{\beta }\left( {{\widehat{x}}_T}\right) {\text {d}}t, \\ I_2(\delta y, \delta \upsilon _0)&:= \int _{{\widehat{\tau }}_{1}}^{{\widehat{\tau }}_{2}} {\mathcal {L}}^{\prime \prime }_t[\delta \eta (t), \delta \upsilon _0(t),0]^2{\text {d}}t = 2\int _{{\widehat{\tau }}_{1}}^{{\widehat{\tau }}_{2}} \delta \upsilon _0(t) L_{\delta \eta (t)}L_{k_2}{\beta }\left( {{\widehat{x}}_T}\right) {\text {d}}t, \\ I_3(\delta y, \delta \upsilon )&:= \int _{{\widehat{\tau }}_{2}}^T {\mathcal {L}}^{\prime \prime }_t[\delta \eta (t), 0, \delta \upsilon (t)]^2{\text {d}}t = 2\int _{{\widehat{\tau }}_{2}}^T \delta \upsilon (t) L_{\delta \eta (t)}L_{g_t}{\beta }\left( {{\widehat{x}}_T}\right) {\text {d}}t . \end{aligned}$$

Let \(\varepsilon _0 := \displaystyle \int _0^{{\widehat{\tau }}_{1}}\delta \upsilon _0(s) {\text {d}}s\). Then

$$\begin{aligned}&\delta \eta (t) = \delta y+ \int _0^t \delta \upsilon _0(s) {\text {d}}s\, k_1({\widehat{x}}_T), \qquad&t \in [0, {\widehat{\tau }}_{1}], \\&\delta \eta (t) = \delta y+ \varepsilon _0 k_1({\widehat{x}}_T) + \int _{{\widehat{\tau }}_{1}}^t \delta \upsilon _0(s) {\text {d}}s\, k_2({\widehat{x}}_T), \qquad&t \in [{\widehat{\tau }}_{1}, {\widehat{\tau }}_{2}], \\&\delta \eta (t) = \delta y+ \varepsilon _0 k({\widehat{x}}_T) + \int _{{\widehat{\tau }}_{2}}^t \delta \upsilon (s)g_s({\widehat{x}}_T) {\text {d}}s\, ,&t \in [{\widehat{\tau }}_{2}, T]. \end{aligned}$$

In particular

$$\begin{aligned} I_1(\delta y, \delta \upsilon _0)&= 2\varepsilon _0 L_{\delta y}L_{k_1}{\beta }\left( {{\widehat{x}}_T}\right) {\text {d}}t + \varepsilon _0^2 L^2_{k_1}{\beta } \left( {{\widehat{x}}_T}\right) , \\ I_2(\delta y, \delta \upsilon _0)&= - 2 \varepsilon _0 L_{\delta y+ \varepsilon _0 k_1}L_{k_2}{\beta }\left( {{\widehat{x}}_T}\right) + \varepsilon _0^2 L^2_{k_2}{\beta } \left( {{\widehat{x}}_T}\right) . \end{aligned}$$

Define \(w(t) := \displaystyle \int _{{\widehat{\tau }}_{2}}^t - \delta \upsilon (s) {\text {d}}s\), \(\varepsilon _1 := w(T)\) and let \(\zeta :[{\widehat{\tau }}_{2}, T] \rightarrow {{\mathbb {R}}}^n\) solve the Cauchy problem

$$\begin{aligned} {\dot{\zeta }}(t) = w(t)\dot{g}_t({\widehat{x}}_T), \qquad \zeta ({\widehat{\tau }}_{2}) = \delta \eta ({\widehat{\tau }}_{2}). \end{aligned}$$

By (42), \(\zeta (T) = {\delta x}+ \varepsilon _1 f_{\mathrm{d}}({\widehat{x}}_T)\). Moreover, applying an intrinsic version of Goh transformation as in [9] we obtain

$$\begin{aligned} I_3 (\delta y, \delta \upsilon )= & {} L_{ \delta y+ \varepsilon _0 k }\int _{{\widehat{\tau }}_{2}}^T -\dot{w}(t) L_{g_t}{\beta } \left( {{\widehat{x}}_T}\right) {\text {d}}t\\&+ \int _{{\widehat{\tau }}_{2}}^T \dot{w}(t) \int _{{\widehat{\tau }}_{2}}^t \dot{w}(s) L_{g_s }L_{g_t}{\beta }\left( {{\widehat{x}}_T}\right) {\text {d}}s{\text {d}}t \\= & {} - \varepsilon _1^2 L^2_{f_{\mathrm{d}}}{\beta } \left( {{\widehat{x}}_T}\right) - 2\varepsilon _1 L_{{\delta x}}L_{f_{\mathrm{d}}}{\beta }\left( {{\widehat{x}}_T}\right) \\&+ \int _{{\widehat{\tau }}_{2}}^T \left( 2\, w(t) L_{\zeta (t)}L_{\dot{g}_{t}}{\beta }\left( {{\widehat{x}}_T}\right) + w(t)^2 R(t) \right) \, {\text {d}}t . \end{aligned}$$

Thus

$$\begin{aligned}&2 C^{\prime \prime }[\delta y, \delta \upsilon _0, \delta \upsilon ]^2 \\&\quad = {\text {D}}^2\gamma ({\widehat{x}}_T)[\delta y]^2 + I_1 + I_2 + I_3 \\&\quad = {\text {D}}^2\gamma ({\widehat{x}}_T)[\delta y]^2 + 2\varepsilon _0 L_{\delta y}L_{k}{\beta }\left( {{\widehat{x}}_T}\right) {\text {d}}t + \varepsilon _0^2\left( L^2_{k}{\beta } \left( {{\widehat{x}}_T}\right) + L_{ \left[ {k_2}, {k_1} \right] }{\beta } \left( {{\widehat{x}}_T}\right) \right) \\&\qquad - \varepsilon _1^2 L^2_{f_{\mathrm{d}}}{\beta } \left( {{\widehat{x}}_T}\right) - 2\varepsilon _1 L_{{\delta x}}L_{f_{\mathrm{d}}}{\beta }\left( {{\widehat{x}}_T}\right) + \int _{{\widehat{\tau }}_{2}}^T \left( 2\, w(t) L_{\zeta (t)}L_{\dot{g}_{t}}{\beta }\left( {{\widehat{x}}_T}\right) + w(t)^2 R(t) \right) \, {\text {d}}t \end{aligned}$$

subject to

$$\begin{aligned} {\dot{\zeta }}(t) = w(t)\dot{g}_t({\widehat{x}}_T), \quad \zeta ({\widehat{\tau }}_{2}) = \delta y+ \varepsilon _0 k ({\widehat{x}}_T), \quad {\delta x}= \zeta (T) - \varepsilon _1 f_{\mathrm{d}}({\widehat{x}}_T) \in T_{{\widehat{x}}_T}N_T. \end{aligned}$$

Notice that \(\delta \upsilon _0\) appears only through \(\varepsilon _0\), while the immersion

$$\begin{aligned} \delta \upsilon \in L^2([{\widehat{\tau }}_{2}, T], {\mathbb {R}}) \mapsto \left( w(t), w(T) \right) \in L^2([{\widehat{\tau }}_{2}, T], {\mathbb {R}}) \times {\mathbb {R}}\end{aligned}$$

is continuous and dense. Thus we can extend \(C^{\prime \prime }\) to variations \( {\delta e}{:=} \left( {\delta x}, \delta y, \varepsilon _0, \varepsilon _1, w \right) \in {\mathcal {W}}_\mathrm{ext}\) as defined in Sect. 5, and the extension coincides with \(J_\mathrm{ext}\).

Splitting of the Second Variation

Lemma B.1

Assume \(f_{\mathrm{d}}({\widehat{x}}_T) \in T_{{\widehat{x}}_T}N_T\). Then the coerciveness of \(J_{\mathrm{ext}}\) on \({\mathcal {W}}_{\mathrm{ext}}\) splits into \( L^2_{f_{\mathrm{d}}}{\beta } \left( {{\widehat{x}}_T}\right) > 0 \) plus the coerciveness of J on \({\mathcal {W}}\).

Proof

We decompose \({\delta x}\in T_{{\widehat{x}}_T}N_T\) as \({\delta x}= \delta z+ rf_{\mathrm{d}}({\widehat{x}}_T)\), \(\delta z\in T_{{\widehat{x}}_T}\widetilde{N}_T\), where \(\widetilde{N}_T\) is the manifold defined in Sect. 5.1. We can compute

$$\begin{aligned} 2 \, J_\mathrm{ext}[{\delta e}]^2&= {\text {D}}^2({\widehat{\alpha }}+ \beta \pm \widetilde{\beta })({\widehat{x}}_T)[\delta y]^2 +\varepsilon _0^2 \left( L^2_{k}{(\beta \pm \widetilde{\beta })} \left( {{\widehat{x}}_T}\right) + H_{12}({{\widehat{\ell }}_1}) \right) \\&\quad + 2\varepsilon _0 L_{\delta y}L_{k}{(\beta \pm \widetilde{\beta })}\left( {{\widehat{x}}_T}\right) - \varepsilon _1^2 L^2_{f_{\mathrm{d}}}{\beta } \left( {{\widehat{x}}_T}\right) - 2 \varepsilon _1 L_{\delta z+ rf_{\mathrm{d}}}L_{f_{\mathrm{d}}}{\beta }\left( {{\widehat{x}}_T}\right) \\&\quad + \int _{{\widehat{\tau }}_{2}}^T \left( 2\, w(t) L_{\zeta (t)}L_{\dot{g}_{t}}{(\beta \pm \widetilde{\beta })}\left( {{\widehat{x}}_T}\right) + w(t)^2 R(t) \right) \, {\text {d}}t \\&= \varGamma [\delta y]^2 + \varepsilon _0^2 J_0 + 2 \varepsilon _0 L_{\delta y}L_{k}{\widetilde{\beta }}\left( {{\widehat{x}}_T}\right) + {\text {D}}^2(\beta - \widetilde{\beta })({\widehat{x}}_T)[\delta y+ \varepsilon _0 k]^2 \\&\quad - \left( \varepsilon _1^2 + 2 \varepsilon _1 r \right) L^2_{f_{\mathrm{d}}}{\beta } \left( {{\widehat{x}}_T}\right) + \left. {\text {D}}^2(\beta - \widetilde{\beta })({\widehat{x}}_T)[\zeta (t)]^2 \right| _{t = {\widehat{\tau }}_{2}}^{t= T} \\&\quad + \int _{{\widehat{\tau }}_{2}}^T \left( 2\, w(t) L_{\zeta (t)}L_{\dot{g}_{t}}{\widetilde{\beta }}\left( {{\widehat{x}}_T}\right) + w(t)^2 R(t) \right) \, {\text {d}}t \\&= 2 J[(\delta z+ (r + \varepsilon _1) f_{\mathrm{d}}({\widehat{x}}_T), \delta y, \varepsilon _0, w)]^2 \\&\quad +(r + \varepsilon _1) ^2 {\text {D}}^2(\beta - \widetilde{\beta })({\widehat{x}}_T)[f_{\mathrm{d}}({\widehat{x}}_T)]^2 - \left( \varepsilon _1^2 + 2 \varepsilon _1 r \right) L^2_{f_{\mathrm{d}}}{\beta } \left( {{\widehat{x}}_T}\right) \\&= 2 J[(\delta z+ (r + \varepsilon _1) f_{\mathrm{d}}({\widehat{x}}_T), \delta y, \varepsilon _0, w)]^2 + r^2 L^2_{f_{\mathrm{d}}}{\beta } \left( {{\widehat{x}}_T}\right) . \end{aligned}$$

The above computation shows that the real variable r is decoupled and \(\delta z+ (r + \varepsilon _1) f_{\mathrm{d}}({\widehat{x}}_T)\) is a generic vector \({\delta x}\in T_{{\widehat{x}}_T}N_T\). This proves the claim. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poggiolini, L., Stefani, G. Strong Local Optimality for a Bang–Bang–Singular Extremal: General Constraints. J Optim Theory Appl 186, 24–49 (2020). https://doi.org/10.1007/s10957-020-01700-2

Download citation

Keywords

  • Sufficient conditions
  • Singular control
  • Second variation
  • Hamiltonian methods

Mathematics Subject Classification

  • 49K15
  • 49J15
  • 93C10