Abstract
The Timoshenko interdependent interpolation element, based on the assumption of cubic interpolation for the transverse displacement and quadratic interpolation for the rotation, is developed for both the static and the dynamic problems. Next, the different behavior of a beam due to the presence of a damaged zone is investigated and the problem of identifying diffused crack affecting a portion of the beam using natural frequencies is studied. The damaged zone can be completely taken into account by introducing only three parameters, and for the inverse problem, numerical optimization is applied to define their values.
This is a preview of subscription content, access via your institution.




















References
- 1.
Casciati, S.: Stiffness identification and damage localization via differential evolution algorithms. Struct. Control Health Monit. 15(3), 436–449 (2008). https://doi.org/10.1002/stc.236
- 2.
Casciati, S., Elia, L.: The potential of the firefly algorithm for damage localization and stiffness identification. Stud. Comput. Intell. 585, 163–178 (2015). https://doi.org/10.1007/978-3-319-13826-8_9
- 3.
Casciati, F., Faravelli, L.: Sensor placement driven by a model order reduction (mor) reasoning. Smart Struct. Syst. 13(3), 343–352 (2014). https://doi.org/10.12989/sss.2014.13.3.343
- 4.
Friedman, Z., Kosmatka, J.: An improved two-node Timoshenko beam finite element. Comput. Struct. 47(3), 473–481 (1993). https://doi.org/10.1016/0045-7949(93)90243-7
- 5.
Reddy, J.: On locking-free shear deformable beam finite elements. Comput. Methods Appl. Mech. Eng. 149(1–4), 113–132 (1997). https://doi.org/10.1016/S0045-7825(97)00075-3
- 6.
Reddy, J.: On the dynamic behaviour of the Timoshenko beam finite elements. Sadhana Acad. Proc. Eng. Sci. 24(3), 175–198 (1999). https://doi.org/10.1007/BF02745800
- 7.
Mukherjee, S., Reddy, J., Krishnamoorthy, C.: Convergence properties and derivative extraction of the superconvergent Timoshenko beam finite element. Comput. Methods Appl. Mech. Eng. 190(26–27), 3475–3500 (2001). https://doi.org/10.1016/S0045-7825(00)00280-2
- 8.
Hearn, G., Testa, R.: Modal analysis for damage detection in structures. J. Struct. Eng. (U.S.) 117(10), 3042–3063 (1991). https://doi.org/10.1061/(ASCE)0733-9445(1991)117:10(3042)
- 9.
Davini, C., Gatti, F., Morassi, A.: A damage analysis of steel beams. Meccanica 28(1), 27–37 (1993). https://doi.org/10.1007/BF00990287
- 10.
Bicanic, N., Chen, H.P.: Damage identification in framed structures using natural frequencies. Int. J. Numer. Methods Eng. 40(23), 4451–4468 (1997). https://doi.org/10.1002/(SICI)1097-0207(19971215)40:23<4451::AID-NME269>3.0.CO;2-L
- 11.
Lew, J.S.: Using transfer function parameter changes for damage detection of structures. AIAA J. 33(11), 2189–2193 (1995). https://doi.org/10.2514/3.12965
- 12.
Lin, C.: Location of modeling errors using modal test data. AIAA J. 28(9), 1650–1654 (1990). https://doi.org/10.2514/3.25264
- 13.
Cornwell, P., Doebling, S., Farrar, C.: Application of the strain energy damage detection method to plate-like structures. J. Sound Vib. 224(2), 359–374 (1999). https://doi.org/10.1006/jsvi.1999.2163
- 14.
Wang, Z., Lin, R., Lim, M.: Structural damage detection using measured frf data. Comput. Methods Appl. Mech. Eng. 147(1–2), 187–197 (1997). https://doi.org/10.1016/S0045-7825(97)00013-3
- 15.
Thyagarajan, S., Schulz, M., Pai, P., Chung, J.: Detecting structural damage using frequency response functions. J. Sound Vib. 210(1), 162–170 (1998). https://doi.org/10.1006/jsvi.1997.1308
- 16.
Lofrano, E., Paolone, A., Vasta, M.: A perturbation approach for the identification of uncertain structures. Int. J. Dyn. Control 4(2), 204–212 (2016). https://doi.org/10.1007/s40435-015-0171-4
- 17.
Lofrano, E., Paolone, A., Vasta, M.: Identification of uncertain vibrating beams through a perturbation approach. ASCE ASME J. Risk Uncertainty Eng. Syst. Part A Civ. Eng. (2016). https://doi.org/10.1061/AJRUA6.0000845
- 18.
Worden, K., Farrar, C., Manson, G., Park, G.: The fundamental axioms of structural health monitoring. Proc. R. Soc. A 463, 1639–1664 (2007). https://doi.org/10.1098/rspa.2007.1834
- 19.
Sayyad, F., Kumar, B.: Identification of crack location and crack size in a simply supported beam by measurement of natural frequencies. JVC J. Vib. Control 18(2), 183–190 (2012). https://doi.org/10.1177/1077546310395979
- 20.
Sayyad, F., Kumar, B., Khan, S.: Approximate analytical method for damage detection in free–free beam by measurement of axial vibrations. Int. J. Damage Mech. 22(1), 133–142 (2013). https://doi.org/10.1177/1056789512440897
- 21.
Vestroni, F., Capecchi, D.: Damage evaluation in cracked vibrating beams using experimental frequencies and finite element models. JVC J. Vib. Control 2(1), 69–86 (1996). https://doi.org/10.1177/107754639600200105
- 22.
Cerri, M., Vestroni, F.: Detection of damage in beams subjected to diffused cracking. J. Sound Vib. 234(2), 259–276 (2000). https://doi.org/10.1006/jsvi.1999.2887
- 23.
Vestroni, F., Capecchi, D.: Damage detection in beam structures based on frequency measurements. J. Eng. Mech. 126(7), 761–768 (2000). https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(761)
- 24.
Capecchi, D., Vestroni, F.: Monitoring of structural systems by using frequency data. Earthq. Eng. Struct. Dyn. 28(5), 447–461 (1999). https://doi.org/10.1002/(SICI)1096-9845(199905)28:5<447::AID-EQE812>3.0.CO;2-2
- 25.
Sinha, J., Friswell, M., Edwards, S.: Simplified models for the location of cracks in beam structures using measured vibration data. J. Sound Vib. 251(1), 13–38 (2002). https://doi.org/10.1006/jsvi.2001.3978
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pingaro, M., Maurelli, G. & Venini, P. Analysis and Damage Identification of a Moderately Thick Cracked Beam Using an Interdependent Locking-Free Element. J Optim Theory Appl 187, 800–821 (2020). https://doi.org/10.1007/s10957-020-01637-6
Received:
Accepted:
Published:
Issue Date:
Keywords
- Interdependent interpolation element
- Damage parameters
- Direct problem
- Inverse problem
- Numerical optimization
Mathematics Subject Classification
- 49J53
- 49K99
- 49K35