Power Diagram Detection with Applications to Information Elicitation

  • Steffen BorgwardtEmail author
  • Rafael M. Frongillo


Power diagrams, a type of weighted Voronoi diagram, have many applications throughout operations research. We study the problem of power diagram detection: determining whether a given finite partition of \({\mathbb {R}}^d\) takes the form of a power diagram. This detection problem is particularly prevalent in the field of information elicitation, where one wishes to design contracts to incentivize self-minded agents to provide honest information. We devise a simple linear program to decide whether a polyhedral cell complex can be described as a power diagram. For positive instances, a representation of the cell complex as a power diagram is returned. Further, we discuss applications to property elicitation, peer prediction, and mechanism design, where this question arises. Our model can efficiently decide the question for complexes of \({\mathbb {R}}^d\) or of a convex subset thereof. The approach is based on the use of an alternative representation of power diagrams and invariance of a power diagram under uniform scaling of the parameters in this representation.


Power diagram Information elicitation Linear programming 

Mathematics Subject Classification

90C05 90C90 91B06 62C05 



We thank Ian Kash for helpful discussions on the applications of our results. Borgwardt gratefully acknowledges support through the Collaboration Grant for Mathematicians, Polyhedral Theory in Data Analytics, of the Simons Foundation, and Frongillo through the Computer and Information Science and Engineering Research Initiation Initiative Grant, Characterization and Complexity of Information Elicitation, of the National Science Foundation.


  1. 1.
    Borgwardt, S., Brieden, A., Gritzmann, P.: Geometric clustering for the consolidation of farmland and woodland. Math. Intell. 36(2), 37–44 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Borgwardt, S., Brieden, A., Gritzmann, P.: An LP-based \(k\)-means algorithm for balancing weighted point sets. Eur. J. Oper. Res. 263(2), 349–355 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bradley, P.S., Bennett, K.P., Demiriz, A.: Constrained \(k\)-Means Clustering. Technical Report, p. MSR-TR-2000-65, Microsoft Research (2000)Google Scholar
  4. 4.
    Bennett, K.P., Mangasarian, O.L.: Multicategory discrimination via linear programming. Optim. Methods Softw. 3, 27–39 (1992)CrossRefGoogle Scholar
  5. 5.
    Borgwardt, S.: On soft power diagrams. J. Math. Model. Algorithms Oper. Res. 14(2), 173–196 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bredensteiner, E.J., Bennett, K.P.: Multicategory classification by support vector machines. Comput. Optim. Appl. 12, 53–79 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2, 265–292 (2001)zbMATHGoogle Scholar
  8. 8.
    Vapnik, V.: Statistical Learning Theory. Wiley, Hoboken (1998)zbMATHGoogle Scholar
  9. 9.
    Weston, J., Watkins, C.: Multi-class Support Vector Machines. Technical Reports, University of London (1998)Google Scholar
  10. 10.
    Lambert, N.S., Shoham, Y.: Eliciting truthful answers to multiple-choice questions. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 109–118 (2009)Google Scholar
  11. 11.
    Lambert, N.S.: Elicitation and evaluation of statistical forecasts. Preprint (2018)Google Scholar
  12. 12.
    Frongillo, R., Kash, I.: General truthfulness characterizations via convex analysis. In: Web and Internet Economics, pp. 354–370 (2014)Google Scholar
  13. 13.
    Agarwal, A., Agarwal, S.: On consistent surrogate risk minimization and property elicitation. In: JMLR Workshop and Conference Proceedings, vol. 40, pp. 1–19 (2015)Google Scholar
  14. 14.
    Frongillo, R., Witkowski, J.: A geometric perspective on minimal peer prediction. ACM Trans. Econ. Comput. 5(3), 17:1–17, 27 (2017)MathSciNetGoogle Scholar
  15. 15.
    Davis, C.: The set of non-linearity of a piecewise-linear function. Scr. Math. 24, 219–228 (1959)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Aurenhammer, F.: A criterion for the affine equivalence of cell complexes in \({\mathbb{R}}^d\) and convex polyhedra in \({\mathbb{R}}^{d+1}\). Discrete Comput. Geom. 2(1), 49–64 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16(1), 78–96 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Borgwardt, S.: A Combinatorial Optimization Approach to Constrained Clustering. Ph.D. Thesis (2010)Google Scholar
  19. 19.
    Brieden, A., Gritzmann, P.: On optimal weighted balanced clusterings: gravity bodies and power diagrams. SIAM J. Discrete Math. 26, 415–434 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Aurenhammer, F.: Recognising polytopical cell complexes and constructing projection polyhedra. J. Symb. Comput. 3(3), 249–255 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ash, P.F., Bolker, E.D.: Recognizing Dirichlet tesselations. Geometriae Dedicata 19, 175–206 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hartvigsen, D.: Recognizing Voronoi diagrams with linear programming. INFORMS J. Comput. 4(4), 357–452 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing, Singapore (2013)CrossRefzbMATHGoogle Scholar
  24. 24.
    Rybnikov, K.: Stresses and liftings of cell-complexes. Discrete Comput. Geom. 21(4), 481–517 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20, 61–76 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Savage, L.J.: Elicitation of personal probabilities and expectations. J. Am. Stat. Assoc. 66(336), 783–801 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Osband, K.H.: Providing Incentives for Better Cost Forecasting. University of California, Berkeley (1985)Google Scholar
  28. 28.
    Lambert, N.S., Pennock, D.M., Shoham, Y.: Eliciting properties of probability distributions. In: Proceedings of the 9th ACM Conference on Electronic Commerce, pp. 129–138 (2008)Google Scholar
  29. 29.
    Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk bounds. J. Am. Stat. Assoc. 101(473), 138–156 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ramaswamy, H.G., Agarwal, S., Tewari, A.: Convex calibrated surrogates for low-rank loss matrices with applications to subset ranking losses. In: Advances in Neural Information Processing Systems, vol. 26, pp. 1475–1483. Curran Associates Inc. (2013)Google Scholar
  31. 31.
    Miller, N., Resnick, P., Zeckhauser, R.: Eliciting informative feedback: the peer-prediction method. Manag. Sci. 51(9), 1359–1373 (2005)CrossRefGoogle Scholar
  32. 32.
    Witkowski, J., Parkes, D.C.: A robust bayesian truth serum for small populations. In: AAAI Conference on Artificial Intelligence (AAAI) (2012)Google Scholar
  33. 33.
    Saks, M., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains. In: Proceedings of the 6th ACM Conference on Electronic Commerce, pp. 286–293 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Colorado DenverDenverUSA
  2. 2.University of Colorado BoulderBoulderUSA

Personalised recommendations