Skip to main content
Log in

Topological Derivatives of Shape Functionals. Part I: Theory in Singularly Perturbed Geometrical Domains

  • Invited Paper
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Mathematical analysis and numerical solutions of problems with unknown shapes or geometrical domains is a challenging and rich research field in the modern theory of the calculus of variations, partial differential equations, differential geometry as well as in numerical analysis. In this series of three review papers, we describe some aspects of numerical solution for problems with unknown shapes, which use tools of asymptotic analysis with respect to small defects or imperfections to obtain sensitivity of shape functionals. In classical numerical shape optimization, the boundary variation technique is used with a view to applying the gradient or Newton-type algorithms. Shape sensitivity analysis is performed by using the velocity method. In general, the continuous shape gradient and the symmetric part of the shape Hessian are discretized. Such an approach leads to local solutions, which satisfy the necessary optimality conditions in a class of domains defined in fact by the initial guess. A more general framework of shape sensitivity analysis is required when solving topology optimization problems. A possible approach is asymptotic analysis in singularly perturbed geometrical domains. In such a framework, approximations of solutions to boundary value problems (BVPs) in domains with small defects or imperfections are constructed, for instance by the method of matched asymptotic expansions. The approximate solutions are employed to evaluate shape functionals, and as a result topological derivatives of functionals are obtained. In particular, the topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, cavities, inclusions, defects, source terms and cracks. This new concept of variation has applications in many related fields, such as shape and topology optimization, inverse problems, image processing, multiscale material design and mechanical modeling involving damage and fracture evolution phenomena. In the first part of this review, the topological derivative concept is presented in detail within the framework of the domain decomposition technique. Such an approach is constructive, for example, for coupled models in multiphysics as well as for contact problems in elasticity. In the second and third parts, we describe the first- and second-order numerical methods of shape and topology optimization for elliptic BVPs, together with a portfolio of applications and numerical examples in all the above-mentioned areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Delfour, M.C., Zolésio, J.P.: Shapes and Geometries. Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001)

    MATH  Google Scholar 

  2. Plotnikov, P., Sokołowski, J.: Compressible Navier–Stokes Equations. Theory and Shape Optimization. Springer, Basel (2012)

    Book  MATH  Google Scholar 

  3. Sokołowski, J., Zolésio, J.P.: Introduction to Shape Optimization—Shape Sensitivity Analysis. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  4. Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations and their Applications, vol. 65. Birkhäuser Boston, Inc., Boston, MA (2005)

    MATH  Google Scholar 

  5. Henrot, A., Pierre, M.: Variation et optimisation de formes, Mathématiques et applications, vol. 48. Springer, Heidelberg (2005)

    Book  MATH  Google Scholar 

  6. Allaire, G.: Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, vol. 146. Springer, New York (2002)

    Book  MATH  Google Scholar 

  7. Bendsøe, M.P.: Optimization of Structural Topology, Shape, and Material. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  8. Kogut, P.I., Leugering, G.: Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  9. Bendsøe, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  10. Aage, N., Andreassen, E., Lazarov, B.S., Sigmund, O.: Giga-voxel computational morphogenesis for structural design. Nature (2017). https://doi.org/10.1038/nature23911

  11. Nazarov, S.A., Sokołowski, J.: Asymptotic analysis of shape functionals. J. Math. Pures Appl. 82(2), 125–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nazarov, S.A.: Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions. Am. Math. Soc. Transl. 198, 77–125 (1999)

    MathSciNet  Google Scholar 

  13. Nazarov, S.A.: Elasticity polarization tensor, surface enthalpy and Eshelby theorem. Probl. Mat. Anal. 41, 3–35 (2009). (English transl.: J. Math. Sci. 159(1–2), 133–167, (2009))

    MathSciNet  MATH  Google Scholar 

  14. Nazarov, S.A.: The Eshelby theorem and a problem on an optimal patch. Algebra Anal. 21(5), 155–195 (2009). (English transl.: St. Petersburg Math. 21(5):791–818, (2009))

    Google Scholar 

  15. Amstutz, S.: Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 49(1–2), 87–108 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Amstutz, S., Novotny, A.A.: Topological asymptotic analysis of the Kirchhoff plate bending problem. ESAIM: Control Optim. Calc. Var. 17(3), 705–721 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Amstutz, S., Novotny, A.A., Van Goethem, N.: Topological sensitivity analysis for elliptic differential operators of order \(2m\). J. Differ. Equ. 256, 1735–1770 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feijóo, R.A., Novotny, A.A., Taroco, E., Padra, C.: The topological derivative for the Poisson’s problem. Math. Models Methods Appl. Sci. 13(12), 1825–1844 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39(6), 1756–1778 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khludnev, A.M., Novotny, A.A., Sokołowski, J., Żochowski, A.: Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions. J. Mech. Phys. Solids 57(10), 1718–1732 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lewinski, T., Sokołowski, J.: Energy change due to the appearance of cavities in elastic solids. Int. J. Solids Struct. 40(7), 1765–1803 (2003)

    Article  MATH  Google Scholar 

  22. Nazarov, S.A., Sokołowski, J.: Self-adjoint extensions for the Neumann Laplacian and applications. Acta Math. Sin. (Engl. Ser.) 22(3), 879–906 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Novotny, A.A.: Sensitivity of a general class of shape functional to topological changes. Mech. Res. Commun. 51, 1–7 (2013)

    Article  Google Scholar 

  24. Novotny, A.A., Sales, V.: Energy change to insertion of inclusions associated with a diffusive/convective steady-state heat conduction problem. Math. Methods Appl. Sci. 39(5), 1233–1240 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sales, V., Novotny, A.A., Rivera, J.E.M.: Energy change to insertion of inclusions associated with the Reissner–Mindlin plate bending model. Int. J. Solids Struct. 59, 132–139 (2013)

    Article  Google Scholar 

  26. Sokołowski, J., Żochowski, A.: Optimality conditions for simultaneous topology and shape optimization. SIAM J. Control Optim. 42(4), 1198–1221 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sokołowski, J., Żochowski, A.: Modelling of topological derivatives for contact problems. Numer. Math. 102(1), 145–179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  29. Amstutz, S.: Analysis of a level set method for topology optimization. Optim. Methods Softw. 26(4–5), 555–573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hintermüller, M.: Fast level set based algorithms using shape and topological sensitivity. Control Cybern. 34(1), 305–324 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Hintermüller, M., Laurain, A.: A shape and topology optimization technique for solving a class of linear complementarity problems in function space. Comput. Optim. Appl. 46(3), 535–569 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Il’in, A.M.: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Translations of Mathematical Monographs, vol. 102. American Mathematical Society, Providence, RI (1992). (Translated from the Russian by V. V. Minachin)

    Book  MATH  Google Scholar 

  34. Maz’ya, V.G., Nazarov, S.A., Plamenevskij, B.A.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. 1, Operator Theory: Advances and Applications, vol. 111. Birkhäuser Verlag, Basel (2000). (Translated from the German by Georg Heinig and Christian Posthoff)

    Book  Google Scholar 

  35. Nazarov, S.A.: Asymptotic Theory of Thin Plates and Rods. Vol. 1: Dimension Reduction and Integral Estimates. Nauchnaya Kniga, Novosibirsk (2001)

    Google Scholar 

  36. Nazarov, S.A., Plamenevskij, B.A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Expositions in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1994)

    Book  Google Scholar 

  37. Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals for elasticity systems. Mech. Struct. Mach. 29(3), 333–351 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Argatov, I.I., Sokolowski, J.: Asymptotics of the energy functional of the Signorini problem under a small singular perturbation of the domain. Comput. Math. Math. Phys. 43, 710–724 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Novotny, A.A., Feijóo, R.A., Padra, C., Taroco, E.: Topological sensitivity analysis. Comput. Methods Appl. Mech. Eng. 192(7–8), 803–829 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Samet, B., Amstutz, S., Masmoudi, M.: The topological asymptotic for the Helmholtz equation. SIAM J. Control Optim. 42(5), 1523–1544 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Guzina, B., Bonnet, M.: Topological derivative for the inverse scattering of elastic waves. Q. J. Mech. Appl. Math. 57(2), 161–179 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ammari, H., Garnier, J., Jugnon, V., Kang, H.: Stability and resolution analysis for a topological derivative based imaging functional. SIAM J. Control Optim. 50(1), 48–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity Imaging. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2015)

    Book  MATH  Google Scholar 

  45. Amigo, R.C.R., Giusti, S., Novotny, A.A., Silva, E.C.N., Sokolowski, J.: Optimum design of flextensional piezoelectric actuators into two spatial dimensions. SIAM J. Control Optim. 52(2), 760–789 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Giusti, S., Mróz, Z., Sokolowski, J., Novotny, A.: Topology design of thermomechanical actuators. Struct. Multidiscip. Optim. 55, 1575–1587 (2017)

    Article  MathSciNet  Google Scholar 

  47. Nazarov, S., Sokolowski, J., Specovius-Neugebauer, M.: Polarization matrices in anisotropic heterogeneous elasticity. Asymptot. Anal. 68(4), 189–221 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Delfour, M.: Topological derivative: a semidifferential via the Minkowski content. J. Convex Anal. 25(3), 957–982 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Cardone, G., Nazarov, S., Sokolowski, J.: Asymptotic analysis, polarization matrices, and topological derivatives for piezoelectric materials with small voids. SIAM J. Control Optim. 48(6), 3925–3961 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Laurain, A., Nazarov, S., Sokolowski, J.: Singular perturbations of curved boundaries in three dimensions. The spectrum of the Neumann Laplacian. Z. Anal. Anwend. 30(2), 145–180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nazarov, S.A., Sokolowski, J.: Spectral problems in the shape optimisation. Singular boundary perturbations. Asymptot. Anal. 56(3–4), 159–204 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Nazarov, S., Sokołowski, J.: Selfadjoint extensions for the elasticity system in shape optimization. Bull. Pol. Acad. Sci. Math. 52(3), 237–248 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nazarov, S., Sokolowski, J.: Modeling of topology variations in elasticity. In: System Modeling and Optimization, IFIP International Federation for Information Processing, vol. 166, pp. 147–158. Kluwer Academic Publishers, Boston, MA (2005)

  54. Nazarov, S., Sokołowski, J.: Self-adjoint extensions of differential operators and exterior topological derivatives in shape optimization. Control Cybern. 34(3), 903–925 (2005)

    MathSciNet  MATH  Google Scholar 

  55. Nazarov, S., Sokolowski, J.: Shape sensitivity analysis of eigenvalues revisited. Control Cybern. 37(4), 999–1012 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Argatov, I.I.: Asymptotic models for the topological sensitivity versus the topological derivative. Open Appl. Math. J. 2, 20–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Pavlov, B.S.: The theory of extensions, and explicitly solvable models. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 42(6(258)), 99–131, 247 (1987)

  58. Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part II: first order method and applications. J. Optim. Theory Appl. 180(3), 1–30 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  59. Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part III: second order method and applications. J. Optim. Theory Appl. 181, 1–22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)

    Book  Google Scholar 

  61. Ammari, H., Kang, H., Nakamura, G., Tanuma, K.: Complete asymptotic expansions of solutions of the system of elastostatics in the presence of inhomogeneities of small diameter. J. Elast. 67, 97–129 (2002)

    Article  MATH  Google Scholar 

  62. Beretta, E., Bonnetier, E., Francini, E., Mazzucato, A.L.: Small volume asymptotics for anisotropic elastic inclusions. Inverse Probl. Imaging 6(1), 1–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  63. Schneider, M., Andrä, H.: The topological gradient in anisotropic elasticity with an eye towards lightweight design. Math. Methods Appl. Sci. 37, 1624–1641 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. Khludnev, A.M., Sokołowski, J.: Griffith formulae for elasticity systems with unilateral conditions in domains with cracks. Eur. J. Mech. A/Solids 19, 105–119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  65. Khludnev, A.M., Sokołowski, J.: On differentation of energy functionals in the crack theory with possible contact between crack faces. J. Appl. Math. Mech. 64(3), 464–475 (2000)

    Google Scholar 

  66. Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids. WIT Press, Southampton (2000)

    Google Scholar 

  67. Khludnev, A.M., Sokołowski, J.: Modelling and Control in Solid Mechanics. Birkhauser, Basel (1997)

    MATH  Google Scholar 

  68. Leugering, G., Sokołowski, J., Żochowski, A.: Control of crack propagation by shape-topological optimization. Discrete Contin. Dyn. Syst. Ser. A 35(6), 2625–2657 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Bouchitté, G., Fragalà, I., Lucardesi, I.: A variational method for second order shape derivatives. SIAM J. Control Optim. 54(2), 1056–1084 (2016). https://doi.org/10.1137/15100494X

    Article  MathSciNet  MATH  Google Scholar 

  70. Bouchitté, G., Fragalà, I., Lucardesi, I.: Shape derivatives for minima of integral functionals. Math. Program. 148(1–2, Ser. B), 111–142 (2014). https://doi.org/10.1007/s10107-013-0712-6

    Article  MathSciNet  MATH  Google Scholar 

  71. Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Jpn. 29(4), 615–631 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  72. Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)

    Article  MATH  Google Scholar 

  73. Sokołowski, J., Zolésio, J.P.: Dérivée par rapport au domaine de la solution d’un problème unilatéral [shape derivative for the solutions of variational inequalities]. C. R. Acad. Sci. Paris Sér. I Math. 301(4), 103–106 (1985)

    MathSciNet  MATH  Google Scholar 

  74. Frémiot, G., Horn, W., Laurain, A., Rao, M., Sokołowski, J.: On the analysis of boundary value problems in nonsmooth domains. Dissertationes Mathematicae (Rozprawy Matematyczne) vol. 462, p. 149 (2009)

  75. Ammari, H., Khelifi, A.: Electromagnetic scattering by small dielectric inhomogeneities. J. Math. Pures Appl. 82, 749–842 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  76. Bellis, C., Bonnet, M., Cakoni, F.: Acoustic inverse scattering using topological derivative of far-field measurements-based \(L^2\) cost functionals. Inverse Probl. 29, 075012 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  77. Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. ESAIM Math. Model. Numer. Anal. 37, 723–748 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  78. Kurasov, P., Posilicano, A.: Finite speed of propagation and local boundary conditions for wave equations with point interactions. Proc. Am. Math. Soc. 133(10), 3071–3078 (2005). https://doi.org/10.1090/S0002-9939-05-08063-9

    Article  MathSciNet  MATH  Google Scholar 

  79. Amstutz, S., Bonnafé, A.: Topological derivatives for a class of quasilinear elliptic equations. J. Math. Pures Appl. 107, 367–408 (2017)

    Article  MathSciNet  Google Scholar 

  80. Larnier, S., Masmoudi, M.: The extended adjoint method. ESAIM Math. Model. Numer. Anal. 47, 83–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  81. Buscaglia, G.C., Ciuperca, I., Jai, M.: Topological asymptotic expansions for the generalized poisson problem with small inclusions and applications in lubrication. Inverse Probl. 23(2), 695–711 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  82. Céa, J., Garreau, S., Guillaume, P., Masmoudi, M.: The shape and topological optimizations connection. Comput. Methods Appl. Mech. Eng. 188(4), 713–726 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partly supported by CNPq (Brazilian Research Council), CAPES (Brazilian Higher Education Staff Training Agency) and FAPERJ (Research Foundation of the State of Rio de Janeiro). These supports are gratefully acknowledged. The authors are indebted to the referee and the editors of JOTA for constructive criticism which allowed them to improve the presentation of this difficult subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sokołowski.

Additional information

Marc Bonnet.

Appendices

Appendices

Formal asymptotic analysis for a scalar elliptic equation is presented. The same method is used for linear elasticity in [11].

1.1 Asymptotic Expansions of Solutions and Functionals

In previous sections, basic derivations are conducted for the simplest case of circular or ball-shaped voids, which nevertheless illustrate the most important features of the approach. In a similar way, ball-shaped penetrable inclusions with contrast \(0< \gamma < \infty \) can be obtained [28].

If more general shapes of voids (inclusions) are required, the asymptotic analysis approach applies as well, as is shown below. We refer the reader to [34] for the general theory and examples of asymptotic expansions.

For the convenience of the reader, a two-scale asymptotic analysis of a nonhomogeneous boundary value problem is performed, for a simple model problem. The small cavity \(\omega _\varepsilon :=\varepsilon \omega \) with center at the origin \({\mathcal {O}}\in \omega _\varepsilon \subset \omega \) can be considered without loss of generality. We denote by the same symbol \(\omega _\varepsilon ({\widehat{x}}):={\widehat{x}}+\omega _\varepsilon \) the cavity with center at \({\widehat{x}}\in \varOmega \). Matched asymptotic expansions are used in two spatial dimensions for scalar problems with the Laplacian, where we consider singular perturbations of the principal part of the elliptic operator. In the case of a penetrable inclusion with contrast parameter \(0< \gamma < \infty \), the results are obtained in a similar way, since it is a regular perturbation of the main part of the elliptic operator.

1.2 Asymptotic Expansions of Steklov–Poincaré Operators

We consider a smooth domain \(\varOmega _\varepsilon :=\varOmega {\setminus }\overline{\omega _\varepsilon }\) for \(\varepsilon \rightarrow 0\) and the nonhomogeneous Dirichlet problem with \(h\in H^{1/2}(\varGamma )\),

$$\begin{aligned} \varDelta w_\varepsilon = 0&\quad \text {in} \,\, \varOmega _\varepsilon , \nonumber \\ w_\varepsilon = h&\quad \text {on} \,\, \varGamma ,\\ \displaystyle {\frac{\partial w_\varepsilon }{\partial n}} = 0&\quad \text {on} \,\, \partial \omega _\varepsilon ,\nonumber \end{aligned}$$
(29)

where \(\varGamma = \partial \varOmega \) is the boundary of \(\varOmega \).

The energy associated with (29) is given by a symmetric bilinear form on the fractional Sobolev space \(H^{1/2}(\varGamma )\),

$$\begin{aligned} a_\varepsilon (h,h)=\displaystyle \int _{\varOmega _\varepsilon } \Vert \nabla w_\varepsilon \Vert ^2 \mathrm{d}x. \end{aligned}$$

We are interested in the asymptotic expansion of this quadratic functional for \(\varepsilon \rightarrow 0\). To this end, the technique of matched asymptotic expansions [33, 34] is used.

Using Green’s formula, we derive equivalent forms of the energy (here, the boundary integrals stand for the duality pairing between \(H^{1/2}(\varGamma )\) and its dual \(H^{-1/2}(\varGamma )\)):

$$\begin{aligned} a_\varepsilon (h,h)= \int _{\varGamma }w_\varepsilon \frac{\partial w_\varepsilon }{\partial n}\mathrm{d}s= \int _{\varGamma }h \frac{\partial w_\varepsilon }{\partial n}\mathrm{d}s. \end{aligned}$$
(30)

Now, we introduce two-scale asymptotic approximation of solutions. We use the method of matched asymptotic expansions and look for two types of expansions, the outer expansion valid far from the cavity \(\omega _\varepsilon \),

$$\begin{aligned} w_\varepsilon (x)=w_0(x)+ \varepsilon ^2 w_1(x)+\varepsilon ^3w_2(x)+\cdots , \end{aligned}$$

and the inner expansion, valid in a small neighborhood of \(\omega _\varepsilon \),

$$\begin{aligned} w_\varepsilon (x)=W_0(\xi )+ \varepsilon W_1(\xi )+\varepsilon ^2W(\xi )+\cdots , \end{aligned}$$

where the fast variable \(\xi \) is defined by

$$\begin{aligned} \xi := \displaystyle {\frac{x}{\varepsilon }}. \end{aligned}$$

Following [33, 34], we obtain

$$\begin{aligned} W_0(\xi )\equiv w_0(0), \end{aligned}$$

and

$$\begin{aligned} W_1(\xi )=\sum _{j=1}^2{\mathcal {Y}}^j(\xi )\displaystyle {\frac{\partial w_0}{\partial x_j}(0)}, \end{aligned}$$

where \({\mathcal {Y}}^j\) is harmonic in \({\mathbb {R}}^2{\setminus }{\overline{\omega }}\) and \(\omega :=\omega _1\). In addition, \({\mathcal {Y}}^j\) satisfies the homogeneous Neumann boundary conditions on \(\partial \omega \) and enjoys the following behavior at infinity:

$$\begin{aligned} {\mathcal {Y}}^j(\xi )=\xi _j+ \displaystyle {\frac{1}{2\pi \Vert \xi \Vert ^2}}\sum _{k=1}^2m_{kj}^\omega \xi _k+O(\Vert \xi \Vert ^{-2}),\quad \Vert \xi \Vert \rightarrow \infty . \end{aligned}$$

Its regular part is denoted by

$$\begin{aligned} {\mathcal {Y}}_0^j(\xi ):= \displaystyle {\frac{1}{2\pi \Vert \xi \Vert ^2}}\sum _{k=1}^2m_{kj}^\omega \xi _k+O(\Vert \xi \Vert ^{-2}), \end{aligned}$$

and we denote its higher order term \(O(\Vert \xi \Vert ^{-2})\) by

$$\begin{aligned} {{\mathfrak {y}}}_0^j(\xi ):={\mathcal {Y}}_0^j(\xi )- \displaystyle {\frac{1}{2\pi \Vert \xi \Vert ^2}}\sum _{k=1}^2m_{kj}^\omega \xi _k. \end{aligned}$$

Taking into account this expansion, we get

$$\begin{aligned} w_1(x)=\sum _{j,k=1}^2 \frac{\partial w_0}{\partial x_j}(0)m_{kj}^\omega {\mathcal {G}}^{(k)}(x). \end{aligned}$$

We denote by \({\mathcal {G}}^{(k)}\) the singular solutions to the problem posed in the punctured domain,

$$\begin{aligned} \begin{array}{ll} \varDelta _x {\mathcal {G}}^{(k)}(x) = 0 &{} \quad \text {in}\,\, \varOmega {\setminus }{{\mathcal {O}}}, \\ {\mathcal {G}}^{(k)}(x) = 0 &{}\quad \text {on}\,\, \varGamma , \\ {\mathcal {G}}^{(k)}(x) = \displaystyle {\frac{x_k}{2\pi \Vert x\Vert ^2}} + O(1)&{}\quad \Vert x\Vert \rightarrow 0. \end{array} \end{aligned}$$
(31)

We set

$$\begin{aligned} {\mathcal {G}}^{(k)}(x)= \displaystyle {\dfrac{x_k}{2\pi \Vert x\Vert ^2}} + {\mathcal {G}}_0^{(k)}(x), \end{aligned}$$

where \({\mathcal {G}}_0^{(k)}\) stands for the regular part. Therefore, far from the cavity \(\omega _\varepsilon \), we have

$$\begin{aligned} w_\varepsilon (x)=w_0(x)+\varepsilon ^2\sum _{j,k=1}^2\dfrac{\partial w_0}{\partial x_j}(0)m_{kj}^\omega {\mathcal {G}}^{(k)}(x) +O(\varepsilon ^2). \end{aligned}$$

Substituting this representation into formula (30), we obtain the one-term expansion

$$\begin{aligned} a_\varepsilon (h,h)=a(h,h)+\varepsilon ^2b(h,h) + O(\varepsilon ^{3-\alpha }). \end{aligned}$$

Here, \(\alpha \in ]0,1[\) and

$$\begin{aligned} b(h,h)=\displaystyle \int _\varGamma h(x)\sum _{j,k=1}^2\dfrac{\partial w_0}{\partial x_j}(0)m_{kj}^\omega \dfrac{\partial {\mathcal {G}}^{(k)}}{\partial n}(x)\mathrm{d}s. \end{aligned}$$

If we combine this with the integral equality on the sphere of radius \(\delta >0\),

$$\begin{aligned} \displaystyle \int _{{\mathbb {S}}_\delta ({\mathcal {O}})} \left( x_j\dfrac{\partial }{\partial n} \displaystyle {\frac{x_k}{2\pi \Vert x\Vert ^2}}- \displaystyle {\frac{x_k}{2\pi \Vert x\Vert ^2}}\dfrac{\partial x_j}{\partial n} \right) \mathrm{d}s=\delta _{jk}, \end{aligned}$$

we get

$$\begin{aligned} b(h,h)=- m^\omega \nabla w_0(0) \cdot \nabla w_0(0). \end{aligned}$$

Since

$$\begin{aligned} \displaystyle \int _{\varGamma }w_0(x)\partial _n{\mathcal {G}}^{(k)}(x) \mathrm{d}s=-\dfrac{\partial w_0}{\partial x_k}(0), \end{aligned}$$

it follows that

$$\begin{aligned} b(h,h)=-\left( \displaystyle \int _{\varGamma } h(x)\partial _n{\mathcal {G}}^{(j)}(x) \mathrm{d}s \right) m^{\omega }_{jk} \left( \displaystyle \int _{\varGamma }h(x)\partial _n{\mathcal {G}}^{(k)}(x) \mathrm{d}s\right) \mathrm{d}s. \end{aligned}$$

Remark A.1

It can be shown that the following supremum taken with respect to the \(H^{1/2}(\varGamma )\)-norm is bounded with respect to \(\varepsilon \rightarrow 0\):

$$\begin{aligned} \sup _{\Vert h \Vert \le 1}\left| a_\varepsilon (h,h)-a(h,h)-\varepsilon ^2b(h,h)\right| \le C_\alpha \varepsilon ^{3-\alpha }. \end{aligned}$$

Since the operators associated with the bilinear forms \((h,h) \mapsto a_\varepsilon (h,h)\) are positive and self-adjoint, the one-term expansion of Steklov–Poincaré operators is obtained for \(\varepsilon \rightarrow 0\),

$$\begin{aligned} {\mathcal {A}}_\varepsilon = {\mathcal {A}} - \varepsilon ^2 {\mathcal {B}} + O(\varepsilon ^{3-\alpha }), \end{aligned}$$

with the remainder bounded in the operator norm \(H^{1/2}(\varGamma ) \rightarrow H^{-1/2}(\varGamma )\). The self-adjoint positive linear operators \({\mathcal {A}}_\varepsilon \) are uniquely determined by the symmetric and coercive bilinear forms \(h \mapsto a_\varepsilon (h,h)\). The operator \({\mathcal {B}}\) is determined by \(h \mapsto b(h,h)\).

1.3 Asymptotic Expansion of a Linear Form

Let us now consider the linear form

$$\begin{aligned} L_\varepsilon (h)=\displaystyle \int _{\varOmega _\varepsilon } f(x)w_\varepsilon (x) \mathrm{d}x. \end{aligned}$$

We use the method of matched asymptotic expansions and set

$$\begin{aligned} w_\varepsilon (w)=w_0(x)+ \varepsilon \sum _{j=1}^{2}\dfrac{\partial w_0 }{\partial x_j}(0) {\mathcal {Y}}_0^j(\xi )+\varepsilon ^2\sum _{j,k=1}^{2} \dfrac{\partial w_0 }{\partial x_j}(0)m^{\omega }_{jk}{\mathcal {G}}_0^{(k)}(x) +\cdots , \end{aligned}$$

hence

$$\begin{aligned} L_\varepsilon (h)= & {} \displaystyle \int _{\varOmega _\varepsilon } f(x)w_0(x) \mathrm{d}x + \varepsilon \displaystyle \int _{\varOmega _\varepsilon } f(x)\sum _{j=1}^{2} \dfrac{\partial w_0 }{\partial x_j}(0) {\mathcal {Y}}_0^j(\xi ) \\&+\,\varepsilon ^2\displaystyle \int _{\varOmega _\varepsilon } f(x)\sum _{j,k=1}^{2} \dfrac{\partial w_0 }{\partial x_j}(0)m^{\omega }_{jk}{\mathcal {G}}_0^{(k)}(x)\mathrm{d}x. \end{aligned}$$

Taking into account that

$$\begin{aligned} \left| {\mathcal {Y}}_0^j(\xi )\right| \le C_0\dfrac{1}{\Vert \xi \Vert }=C_0\dfrac{\varepsilon }{\Vert x\Vert }\quad \text {in}\quad \varOmega _\varepsilon , \end{aligned}$$

it follows that

$$\begin{aligned} L_\varepsilon (h)= & {} \displaystyle \int _{\varOmega } f(x)w_0(x) \mathrm{d}x - \displaystyle \int _{\omega _\varepsilon } f(x)w_0(x) \mathrm{d}x \\&+\, \varepsilon ^2\displaystyle \int _{\varOmega } f(x)\sum _{j,k=1}^{2} \dfrac{\partial w_0 }{\partial x_j}(0)m^{\omega }_{jk}{\mathcal {G}}^{(k)}(x)\mathrm{d}x+\cdots \end{aligned}$$

In order to replace the integrals over \(\varOmega _\varepsilon \) by integrals over \(\varOmega \), we use the estimates

$$\begin{aligned} \varepsilon \displaystyle \int _{\omega _\varepsilon } f(x)\sum _{j,k=1}^{2}\dfrac{\partial w_0 }{\partial x_j}(0){m^{\omega }_{jk}}\dfrac{\varepsilon x_k}{2\pi \Vert x\Vert ^2}\mathrm{d}x\le C_0\varepsilon ^2 \sup _{x\in {\overline{\varOmega }}}|f(x)|\,\displaystyle \int _0^\varepsilon \dfrac{1}{r}r\mathrm{d}r \end{aligned}$$

and

$$\begin{aligned} \displaystyle \int _{\omega _\varepsilon } f(x)\sum _{j,k=1}^{2}\dfrac{\partial w_0 }{\partial x_j}(0){m^{\omega }_{jk}}{\mathcal {G}}_0^{(k)}(x)\le C_0\varepsilon ^2. \end{aligned}$$

Finally,

$$\begin{aligned} L_\varepsilon (h)=L_0(h)-\varepsilon ^2 f(0)w_0(0)|\omega | + \varepsilon ^2\displaystyle \int _{\varOmega } f(x)\sum _{j,k=1}^{2} \dfrac{\partial w_0 }{\partial x_j}(0)m^{\omega }_{jk}{\mathcal {G}}^{(k)}(x)\mathrm{d}x+\cdots \end{aligned}$$

1.4 Energy Functional of the Nonhomogeneous Dirichlet Problem in a Perturbed Domain

The energy functional

$$\begin{aligned} {\mathcal {J}}_{\varOmega _\varepsilon }(u_\varepsilon )= \dfrac{1}{2}\displaystyle \int _{\varOmega _\varepsilon }\Vert \nabla u_\varepsilon \Vert ^2\mathrm{d}x - \displaystyle \int _{\varOmega _\varepsilon }fu_\varepsilon \mathrm{d}x = \dfrac{1}{2}\displaystyle \int _{\varGamma } u_\varepsilon \dfrac{\partial u_\varepsilon }{\partial n}\mathrm{d}s - \dfrac{1}{2}\displaystyle \int _{\varOmega _\varepsilon }fu_\varepsilon \mathrm{d}x \end{aligned}$$

depends on solutions to the boundary value problem

$$\begin{aligned} \begin{array}{ll} -\varDelta u_\varepsilon = f &{}\quad \text {in} \,\, \varOmega _\varepsilon ,\\ u_\varepsilon = h_\varepsilon &{}\quad \text {on} \,\, \varGamma , \\ \displaystyle {\frac{\partial u_\varepsilon }{\partial n}} = 0 &{}\quad \text {on} \,\, \partial \omega _\varepsilon . \end{array} \end{aligned}$$
(32)

with the associated Green formula

$$\begin{aligned} \displaystyle \int _{\varOmega _\varepsilon }\Vert \nabla u_\varepsilon \Vert ^2\mathrm{d}x = \displaystyle \int _{\varGamma } h_\varepsilon \dfrac{\partial u_\varepsilon }{\partial n}\mathrm{d}s + \displaystyle \int _{\varOmega _\varepsilon }fu_\varepsilon \mathrm{d}x. \end{aligned}$$

For completeness of our analysis, we assume that the Dirichlet boundary datum also depends on the small parameter,

$$\begin{aligned} h_\varepsilon =h_0+\varepsilon ^2 h_1+ o(\varepsilon ^2)\quad \text {in}\quad H^{1/2}(\varGamma ), \end{aligned}$$

and that there is a source term inside the perturbed domain \(\varOmega _\varepsilon \).

The approximation of solutions takes the form

$$\begin{aligned} u_\varepsilon (x) = v_0(x)+\varepsilon ^2v_1(x)+\varepsilon \sum _{j=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){\mathcal {Y}}_0^j(\xi )+ \varepsilon ^2\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}{\mathcal {G}}_0^{(k)}(x)+\cdots \end{aligned}$$

where

$$\begin{aligned} \begin{array}{ll} -\varDelta v_0 = f &{}\quad \text {in} \,\, \varOmega , \\ v_0 = h_0 &{} \quad \text {on} \,\, \varGamma , \end{array} \quad \text {and} \quad \begin{array}{ll} -\varDelta v_1 = 0 &{}\quad \text {in} \,\, \varOmega , \\ v_1 = h_1 &{}\quad \text {on} \,\, \varGamma . \end{array} \end{aligned}$$

The approximation of the normal derivatives is

$$\begin{aligned} \begin{aligned} \dfrac{\partial u_\varepsilon }{\partial n}(x)=&\dfrac{\partial v_0}{\partial n}(x)+ \varepsilon ^2\dfrac{\partial v_1}{\partial n}(x)+ \varepsilon \sum _{j=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0)\dfrac{\partial {\mathcal {Y}}_0^j}{\partial \nu }(\xi )\\&+ \varepsilon ^2\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}\dfrac{\partial {\mathcal {G}}_0^{(k)}}{\partial n}(x)+\cdots \end{aligned} \end{aligned}$$

where \(\dfrac{\partial }{\partial n}=n\cdot \nabla _x\), \(\dfrac{\partial }{\partial \nu }=n\cdot \nabla _{\xi }\) and \(\xi =x/\varepsilon \). We recall that the higher order term of \({\mathcal {Y}}_0^j(\xi )\) satisfies

$$\begin{aligned} \left| {\mathfrak {y}}_0^j(\xi )\right| \le C_0\dfrac{1}{\Vert \xi \Vert ^2}=C_0\dfrac{\varepsilon ^2}{\Vert x\Vert ^2} \quad \text {for}\quad \xi =\dfrac{x}{\varepsilon }\in {\mathbb {R}}^2{\setminus }\omega \quad \text {or for}\quad x\in \varOmega _\varepsilon . \end{aligned}$$

Thus, in the approximation of \(u_\varepsilon (x)\), the terms of order \(O(\varepsilon ^3)\),

$$\begin{aligned} \varepsilon \sum _{j=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){\mathfrak {y}}_0^j(\xi ) \end{aligned}$$

can be neglected. Therefore, from the formula

$$\begin{aligned} u_\varepsilon (x)=v_0(x)+\varepsilon ^2v_1(x)+\varepsilon \sum _{j=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){\mathfrak {y}}_0^j(\xi )+\varepsilon ^2\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}{\mathcal {G}}^{(k)}(x)+\cdots \end{aligned}$$

we deduce

$$\begin{aligned} \dfrac{\partial u_\varepsilon }{\partial n}(x)=\dfrac{\partial v_0}{\partial n}(x)+ \varepsilon ^2\dfrac{\partial v_1}{\partial n}(x)+ \varepsilon ^2\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}\dfrac{\partial {\mathcal {G}}^{(k)}}{\partial n}(x)+\cdots , \end{aligned}$$

and it follows that

$$\begin{aligned} u_\varepsilon (x)\dfrac{\partial u_\varepsilon }{\partial n}(x)= & {} v_0(x)\dfrac{\partial v_0}{\partial n}(x) \\&+\,\varepsilon ^2\left( v_1(x)\dfrac{\partial v_0}{\partial n}(x)+v_0(x)\dfrac{\partial v_1}{\partial n}(x) \right. \\&\left. +\, v_0(x)\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}{\mathcal {G}}^{(k)}(x)\right) +\cdots \end{aligned}$$

since the second-order term

$$\begin{aligned} \dfrac{\partial v_0}{\partial n}(x)\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}{\mathcal {G}}^{(k)}(x) \end{aligned}$$

vanishes, by taking into account that \({\mathcal {G}}^{(k)}(x)=0\) on the boundary \(\varGamma \). We return to the shape functional,

$$\begin{aligned} {\mathcal {J}}_{\varOmega _\varepsilon }(u_\varepsilon ) = \dfrac{1}{2}\int _\varGamma u_\varepsilon (x)\dfrac{\partial u_\varepsilon }{\partial n}(x)\mathrm{d}s- \dfrac{1}{2}\int _{\varOmega _\varepsilon }fu_\varepsilon \mathrm{d}x, \end{aligned}$$

and find approximations for the integrals

$$\begin{aligned} \dfrac{1}{2}\int _\varGamma u_\varepsilon (x)\dfrac{\partial u_\varepsilon }{\partial n}(x)\mathrm{d}s= & {} \dfrac{1}{2}\int _\varGamma v_0(x)\dfrac{\partial v_0}{\partial n}(x)\mathrm{d}s \\&+\, \dfrac{\varepsilon ^2}{2}\int _\varGamma \left( v_1(x)\dfrac{\partial v_0}{\partial n}(x) + v_0(x)\dfrac{\partial v_1}{\partial n}(x)\right) \mathrm{d}s \\&+\, \dfrac{\varepsilon ^2}{2}\int _\varGamma v_0(x)\sum _{j,k=1}^{2} \dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}} \dfrac{\partial {\mathcal {G}}^{(k)}}{\partial n}(x)\mathrm{d}s +\cdots \end{aligned}$$

and

$$\begin{aligned} -\dfrac{1}{2}\int _{\varOmega _\varepsilon }f u_\varepsilon \mathrm{d}x= & {} -\dfrac{1}{2}\int _{\varOmega _\varepsilon }f v_0 \mathrm{d}x -\dfrac{\varepsilon ^2}{2}\int _{\varOmega _\varepsilon }f v_1 \mathrm{d}x \\&-\,\dfrac{\varepsilon ^2}{2}\int _{\varOmega _\varepsilon }f\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}{\mathcal {G}}^{(k)}(x)+\cdots , \end{aligned}$$

which can be written as

$$\begin{aligned} -\dfrac{1}{2}\int _{\varOmega _\varepsilon }f u_\varepsilon \mathrm{d}x= & {} -\dfrac{1}{2}\int _{\varOmega }f v_0 \mathrm{d}x+\dfrac{1}{2}\int _{\omega _\varepsilon }f v_0 \mathrm{d}x -\dfrac{\varepsilon ^2}{2}\int _{\varOmega }f v_1 \mathrm{d}x+\dfrac{\varepsilon ^2}{2}\int _{\omega _\varepsilon }f v_1 \mathrm{d}x \\&-\,\dfrac{\varepsilon ^2}{2}\int _{\varOmega }f\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}{\mathcal {G}}^{(k)}(x)\mathrm{d}x \\&+\,\dfrac{\varepsilon ^2}{2}\int _{\omega _\varepsilon }f\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}{\mathcal {G}}^{(k)}(x)\mathrm{d}x +\cdots \end{aligned}$$

or as

$$\begin{aligned} -\dfrac{1}{2}\int _{\varOmega _\varepsilon }f u_\varepsilon \mathrm{d}x= & {} -\dfrac{1}{2}\int _{\varOmega }f v_0 \mathrm{d}x+\dfrac{\varepsilon ^2}{2}f(0)v_0(0)|\omega | -\dfrac{\varepsilon ^2}{2}\int _{\varOmega }f v_1 \mathrm{d}x \\&-\,\dfrac{\varepsilon ^2}{2}\int _{\varOmega }f\sum _{j,k=1}^{2} \dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}{\mathcal {G}}^{(k)}(x)\mathrm{d}x +O(\varepsilon ^3). \end{aligned}$$

Here, we take into account that the Taylor formula \(\dfrac{1}{2}\int _{\omega _\varepsilon }f v_0 \mathrm{d}x\) is replaced by \(\dfrac{\varepsilon ^2}{2}f(0)v_0(0)|\omega |\). In the same way, it follows that \(\dfrac{\varepsilon ^2}{2}\int _{\omega _\varepsilon }f v_1 \mathrm{d}x\) is \(O(\varepsilon ^4)\); finally, the latter integral over \(\omega _\varepsilon \) is \(O\left( \int _0^\varepsilon \dfrac{1}{r} r\right) \). As a result,

$$\begin{aligned} {\mathcal {J}}_{\varOmega _\varepsilon }(u_\varepsilon )= & {} \dfrac{1}{2}\int _\varGamma v_0(x)\dfrac{\partial v_0}{\partial n}(x)\mathrm{d}s - \dfrac{1}{2}\int _{\varOmega }f v_0 \mathrm{d}x \\&+\, \dfrac{\varepsilon ^2}{2}\int _\varGamma \left( v_1(x)\dfrac{\partial v_0}{\partial n}(x)+v_0(x)\dfrac{\partial v_1}{\partial n}(x)\right) \mathrm{d}s\\&+\, \dfrac{\varepsilon ^2}{2}\int _\varGamma v_0(x)\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}} \dfrac{\partial {\mathcal {G}}^{(k)}}{\partial n}(x)\mathrm{d}s \\&-\, \dfrac{\varepsilon ^2}{2}\int _{\varOmega }f\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}} {\mathcal {G}}^{(k)}(x)\mathrm{d}x\\&+\,\dfrac{\varepsilon ^2}{2}f(0)v_0(0)|\omega | - \dfrac{\varepsilon ^2}{2}\int _{\varOmega }f v_1 \mathrm{d}x. \end{aligned}$$

We denote by \(B_\delta ({\mathcal {O}})\) the ball at the origin of radius \(\delta \), with boundary \({\mathbb {S}}_\delta :={\mathbb {S}}_\delta ({\mathcal {O}}) \). By the Green formula in the domain \(\varOmega _\delta =\varOmega {\setminus }\overline{B_\delta ({\mathcal {O}})}\) with boundary \(\partial \varOmega _\delta =\varGamma \cup {\mathbb {S}}_\delta \), for \(\delta \rightarrow 0\),

$$\begin{aligned} \int _{\varOmega _\delta }(v_0\varDelta {\mathcal {G}}^{(k)}-{\mathcal {G}}^{(k)}\varDelta v_0)\mathrm{d}x = \int _{\partial \varOmega _\delta }\left( v_0\dfrac{\partial {\mathcal {G}}^{(k)}}{\partial n}-{\mathcal {G}}^{(k)}\dfrac{\partial v_0}{\partial n}\right) \mathrm{d}s. \end{aligned}$$

Since \(\varDelta v_0=-f\), we find

$$\begin{aligned} \int _{\varOmega _\delta }{\mathcal {G}}^{(k)} f \mathrm{d}x=\int _{\varGamma }v_0\dfrac{\partial {\mathcal {G}}^{(k)}}{\partial n}\mathrm{d}s+\int _{{\mathbb {S}}_\delta }\left( v_0\dfrac{\partial {\mathcal {G}}^{(k)}}{\partial n}-{\mathcal {G}}^{(k)}\dfrac{\partial v_0}{\partial n}\right) \mathrm{d}s. \end{aligned}$$

Passage to the limit \(\delta \rightarrow 0\) leads to

$$\begin{aligned} \int _{\varOmega _\delta }{\mathcal {G}}^{(k)} f \mathrm{d}x-\int _{\varGamma }v_0\dfrac{\partial {\mathcal {G}}^{(k)}}{\partial n}\mathrm{d}s=\dfrac{\partial v_0}{\partial x_k}(0) \end{aligned}$$

Finally, we arrive at the expression

$$\begin{aligned} {\mathcal {J}}_{\varOmega _\varepsilon }(u_\varepsilon )= & {} {\mathcal {J}}_{\varOmega }(v_0)+\dfrac{\varepsilon ^2}{2}f(0)v_0(0)|\omega |- \dfrac{\varepsilon ^2}{2}\sum _{j,k=1}^{2}\dfrac{\partial v_0}{\partial x_j}(0){m^{\omega }_{jk}}\dfrac{\partial v_0}{\partial x_k}(0) \\&+\, \dfrac{\varepsilon ^2}{2}\displaystyle \int _{\varGamma }\left( v_1(x)\dfrac{\partial v_0}{\partial n}(x)+ v_0(x)\dfrac{\partial v_1}{\partial n}(x)\right) \mathrm{d}s\\&-\,\dfrac{\varepsilon ^2}{2}\displaystyle \int _{\varOmega }f(x)v_1(x) \mathrm{d}x +O(\varepsilon ^3). \end{aligned}$$

Remark A.2

The adjoint equations are commonly used in final formulas for topological derivatives. We refer the reader to[80] for related results. Some asymptotic expansions for the Laplace operator are given in [81, 82].

Remark A.3

The case of the elasticity system in the same framework of asymptotic analysis is considered in [11], where the results obtained are given with complete proofs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novotny, A.A., Sokołowski, J. & Żochowski, A. Topological Derivatives of Shape Functionals. Part I: Theory in Singularly Perturbed Geometrical Domains. J Optim Theory Appl 180, 341–373 (2019). https://doi.org/10.1007/s10957-018-1417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1417-z

Keywords

Mathematics Subject Classification

Navigation