Intersection Theorems with Applications in Optimization



In this paper, we establish two intersection theorems which are useful in considering some optimization problems (complementarity problems, variational inequalities, minimax inequalities, saddle point problems).


Weak KKM map Variational inequality Minimax inequality 

Mathematics Subject Classification

47H10 49J53 


  1. 1.
    Fan, K.: A generalization of Tychonoff s fixed point theorem. Math. Ann. 142, 305–310 (1961)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Park, S.: Some coincidence theorems on acyclic multifunctions and applications to KKM theory. In: Fixed Point Theory and Applications, pp. 248–277. World Scientific Publications, River Edge, NJ (1992)Google Scholar
  3. 3.
    Chang, T.H., Yen, C.L.: KKM property and fixed point theorems. J. Math. Anal. Appl. 203, 224–235 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Balaj, M.: Weakly \(G\)-KKM mappings, \(G\)-KKM property, and minimax inequalities. J. Math. Anal. Appl. 294, 237–245 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide. Springer, Berlin (2006)MATHGoogle Scholar
  6. 6.
    Agarwal, R.P., Balaj, M., O’Regan, D.: Common fixed point theorems in topological vector spaces via intersection theorems. J. Optim. Theory Appl. 173, 443–458 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Isac, G.: Topological Methods in Complementarity Theory. Nonconvex Optimization and its Applications, vol. 41. Kluwer Academic Publishers, Dordrecht (2000)CrossRefMATHGoogle Scholar
  8. 8.
    Isac, G., Kalashnikov, V.V.: Exceptional family of elements, Leray–Schauder alternative, pseudomonotone operators and complementarity. J. Optim. Theory Appl. 109, 69–83 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Peng, J., Yang, X.: On multivalued complementarity problems in Banach spaces. J. Math. Anal. Appl. 307, 245–254 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Khan, S.A.: Generalized vector implicit quasi complementarity problems. J. Glob. Optim. 49, 695–705 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fu, J., Wang, S.: Generalized strong vector quasi-equilibrium problem with domination structure. J. Glob. Optim. 55, 839–847 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Agarwal, R.P., Balaj, M., O’Regan, D.: An intersection theorem for set-valued mappings. Appl. Math. 58, 269–278 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Browder, F.: The fixed point theory of multi-valued mappings in topological vector spaces. Math. Ann. 177, 283–301 (1968)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Klee, V.: External structure of convex sets. Math. Z. 69, 90–104 (1958)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Liu, F.C.: On a form of KKM principle and Sup Inf Sup inequalities of von Neumann and of Ky Fan type. J. Math. Anal. Appl. 155, 420–436 (1991)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fan, K.: A minimax inequality and applications. Inequalities III, 103–113 (1972)MathSciNetGoogle Scholar
  17. 17.
    Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston (1990)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ravi P. Agarwal
    • 1
    • 2
  • Mircea Balaj
    • 3
  • Donal O’Regan
    • 4
  1. 1.Texas A&M University-KingsvilleKingsvilleUSA
  2. 2.Florida Institute of TechnologyMelbourneUSA
  3. 3.University of OradeaOradeaRomania
  4. 4.National University of IrelandGalwayIreland

Personalised recommendations