Skip to main content
Log in

Optimal Control of Diffusion Equation with Fractional Time Derivative with Nonlocal and Nonsingular Mittag-Leffler Kernel

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a diffusion equation with fractional time derivative with nonsingular Mittag-Leffler kernel in Hilbert spaces. We first prove the existence and uniqueness of solution by means of a spectral argument. Then, we consider a distributed controlled fractional diffusion problem. We show that there exists a unique optimal control, which can act on the system in order to approach the state of the system by a given state at minimal cost. Finally, using the Euler–Lagrange first-order optimality condition, we obtain an optimality system, which characterizes the optimal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30(1), 134–144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mophou, G.: Optimal control of fractional diffusion equation. Comput. Math. Appl. 61, 68–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, J.H., Rim, H., Sakthivel, R.: On certain exact solutions of diffusive predator-prey system of fractional order. Chin. J. Phys. 54, 135–146 (2016)

    Article  MathSciNet  Google Scholar 

  8. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frederico, G.S.F., Torres, D.F.M.: Fractional optimal control in the sense of caputo and the fractional Noether’s Theorem. Int. Math. Forum. 3(10), 479–493 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  12. Samko, S., Kilbas, A.A., Marichev, O.: Fractional Integrals and Derivatives. Taylor & Francis, London (1993)

    MATH  Google Scholar 

  13. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semi-discrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Thermal Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  15. Djida, J.D., Atangana, A., Area, I.: Numerical computation of a fractional derivative with non-local and non-singular kernel. Math. Model. Nat. Phenom. 12(3), 4–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10, 1098–1107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  18. Bazhlekova E.: Fractional Evolution Equation in Banach Spaces. Ph.D. Thesis. Eindhoven University of Technology (2001)

  19. Diethelm, K., Luchko, Y.: Numerical solution of linear multi-term initial value problems of fractional order. J. Comput. Anal. Appl. 6, 243–263 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Djida J.D., Atangana A., and Area I.: Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. arXiv:1701.01479 (2017)

  21. Baleanu, D., Joseph, C., Mophou, G.: Low regret control for a fractional wave equation with incomplete data. Adv. Differ. Equ. 1, 240 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is grateful for the facilities provided by the German research Chairs and the Teacher Training Program of AIMS-Cameroon. The first author is also indebted to the AIMS-Cameroon 2017–2018 Tutor fellowship. The second author was supported by the Alexander von Humboldt foundation, under the program financed by the BMBF entitled “German research Chairs”. The work of the third author has been partially supported by the Agencia Estatal de Innovación (AEI) of Spain under Grant MTM2016-75140-P, cofinanced by the European Community fund FEDER, and Xunta de Galicia, Grant R 2016/022. Besides the authors are grateful to the unknown referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Area.

Appendix: Proof of Proposition 2.1

Appendix: Proof of Proposition 2.1

Let \(\phi , y \in {\mathcal {C}}^{\infty }({\bar{Q}})\) be given. Then,

$$\begin{aligned}&\displaystyle \int _{\varOmega }\int _{0}^{T} \bigg ({}^{abc}_{0} \mathbf D ^{\alpha }_{t}~y(x,t) - \Delta y(x,t) \bigg ) \phi (x,t) \hbox {d}x~\hbox {d}t \\&\quad =\displaystyle \int _{\varOmega }\int _{0}^{T} {}^{abc}_{0} \mathbf D ^{\alpha }_{t}~y(x,t)\phi (x,t)\hbox {d}x~\hbox {d}t \\&\qquad - \int _{\varOmega }\int _{0}^{T} \Delta y(x,t)\phi (x,t) \hbox {d}x~\hbox {d}t = (A) + (B) \end{aligned}$$

Let us compute each part separately.

  • Computation of (A): By using the definition of the Atangana–Baleanu fractional derivative (1) at the base point \(a=0\) we have

    $$\begin{aligned} \int _{0}^{T} {}^{abc}_{0} \mathbf D ^{\alpha }_{t}~y(x,t)\phi (x,t)\hbox {d}t = \int _{0}^{T} \left[ \frac{B(\alpha )}{1-\alpha } \int _{0}^{t} y'(\tau ) E_{\alpha } \left[ -\gamma (t-\tau )^{\alpha } \right] \hbox {d}\tau \right] \phi (t)\hbox {d}t.\nonumber \\ \end{aligned}$$
    (29)

Let us define \(A_{1} := \int _{0}^{t} y'(\tau ) E_{\alpha } \left[ -\gamma (t-\tau )^{\alpha } \right] \hbox {d}\tau \). By using integration by parts it yields

$$\begin{aligned} A_{1} = y(t) - y(0)E_{\alpha }[-\alpha t^{\alpha }] - \int _{0}^{t}\gamma (t-\tau )^{\alpha -1}E_{\alpha ,\alpha } \left[ -\gamma (t-\tau )^{\alpha } \right] y(\tau )\hbox {d}\tau . \end{aligned}$$

Replacing \(A_{1}\) by its value in (29) we get that

$$\begin{aligned} \displaystyle \int _{0}^{T} {}^{abc}_{0} \mathbf D ^{\alpha }_{t}~y(x,t)\phi (x,t)\hbox {d}t= & {} \displaystyle \frac{B(\alpha )}{1-\alpha } \int _{0}^{T} y(x,t) \phi (x,t) \hbox {d}t \nonumber \\&- \frac{B(\alpha )}{1-\alpha } \int _{0}^{T} y(x,0)E_{\alpha }[-\alpha t^{\alpha }]\phi (x,t)\hbox {d}t \nonumber \\&\displaystyle - \frac{B(\alpha )}{1-\alpha } \int _{0}^{T} \left[ \int _{0}^{t} \gamma (t-\tau )^{\alpha -1}E_{\alpha ,\alpha } \left[ -\gamma (t-\tau )^{\alpha } \right] y(x,\tau )\hbox {d}\tau \right] \phi (x,t)\hbox {d}t \nonumber \\&=: A_{2} + A_{3} + A_{4}, \end{aligned}$$
(30)

with

$$\begin{aligned} A_{2}:= & {} \displaystyle \frac{B(\alpha )}{1-\alpha } \int _{0}^{T} y(x,t) \phi (x,t) \hbox {d}t;\\ A_{3}:= & {} \displaystyle \frac{B(\alpha )}{1-\alpha } \int _{0}^{T} y(x,0)E_{\alpha }[-\alpha t^{\alpha }]\phi (x,t)\hbox {d}t; \\ A_{4}:= & {} \displaystyle -\frac{B(\alpha )}{1-\alpha } \int _{0}^{T} \left[ \int _{0}^{t} \gamma (t-\tau )^{\alpha -1}E_{\alpha ,\alpha } \left[ -\gamma (t-\tau )^{\alpha } \right] y(x,\tau )\hbox {d}\tau \right] \phi (x,t)\hbox {d}t. \end{aligned}$$

Let us compute \(A_{4}\)

$$\begin{aligned} A_{4}:= & {} \displaystyle -\frac{B(\alpha )}{1-\alpha } \int _{0}^{T} \left[ \int _{0}^{t} \gamma (t-\tau )^{\alpha -1}E_{\alpha ,\alpha } \left[ -\gamma (t-\tau )^{\alpha } \right] y(x,\tau )\hbox {d}\tau \right] \phi (x,t)\hbox {d}t \\= & {} \displaystyle \frac{B(\alpha )}{1-\alpha } \int _{0}^{T} y(x,\tau )\left[ -\int _{\tau }^{T} \gamma (t-\tau )^{\alpha -1}E_{\alpha ,\alpha } \left[ -\gamma (t-\tau )^{\alpha } \right] \phi (x,t) \hbox {d}t \right] \hbox {d}\tau \\= & {} \displaystyle \frac{B(\alpha )}{1-\alpha } \phi (x,T)\int _{0}^{T} y(x,t) E_{\alpha ,\alpha } \left[ -\gamma (T-t)^{\alpha } \right] \hbox {d}t -\frac{B(\alpha )}{1-\alpha } \int _{0}^{T} y(x,t) \phi (x,t) \hbox {d}t \\&\displaystyle + \int _{0}^{T} y(x,t) \left[ -\frac{B(\alpha )}{1-\alpha } \int _{t}^{T} E_{\alpha ,\alpha } \left[ -\gamma (t-\tau )^{\alpha } \right] \phi '(x,\tau ) \hbox {d}\tau \right] \hbox {d}t \\= & {} \displaystyle \frac{B(\alpha )}{1-\alpha } \phi (x,T)\int _{0}^{T} y(x,t) E_{\alpha ,\alpha } \left[ -\gamma (T-t)^{\alpha } \right] \hbox {d}t -\frac{B(\alpha )}{1-\alpha } \int _{0}^{T} y(x,t) \phi (x,t) \hbox {d}t \\&\displaystyle +\int _{0}^{T}y(x,t) {}^{abc}_{T} \mathbf D ^{\alpha }_{t}~y(x,t)\phi (x,t)\hbox {d}t. \end{aligned}$$

Hence, replacing \(A_{4}\) by its value in (30) we finally have that

$$\begin{aligned} \displaystyle \int _{0}^{T} {}^{abc}_{0} \mathbf D ^{\alpha }_{t}~y(x,t)\phi (x,t)\hbox {d}t= & {} -\int _{0}^{T}y(x,t) {}^{abc}_{T} \mathbf D ^{\alpha }_{t}~y(x,t)\phi (x,t)\hbox {d}t \nonumber \\&+ \frac{B(\alpha )}{1-\alpha } \phi (x,T)\int _{0}^{T} y(x,t) E_{\alpha ,\alpha } \left[ -\gamma (T-t)^{\alpha } \right] \hbox {d}t\nonumber \\&-\frac{B(\alpha )}{1-\alpha } y(x,0)\int _{0}^{T}E_{\alpha }[-\alpha t^{\alpha }]\phi (x,t)\hbox {d}t. \end{aligned}$$
(31)
  • Computation of (B) By a using integration by parts we have that

    $$\begin{aligned} (B):= & {} \displaystyle -\int _{\varOmega }\int _{0}^{T}\phi (x,t)\Delta u(x,t) \hbox {d}x~\hbox {d}t = \int _{0}^{T} \int _{\partial \varOmega } u \frac{\partial \phi }{\partial \sigma } \phi \hbox {d}\sigma ~\hbox {d}t \nonumber \\&- \int _{0}^{T} \int _{\partial \varOmega } \phi \frac{\partial u}{\partial \sigma } \hbox {d}\sigma ~\hbox {d}t \nonumber \\&\displaystyle - \int _{\varOmega }\int _{0}^{T}u(x,t) \Delta \phi (x,t)\hbox {d}t~\hbox {d}x. \end{aligned}$$
    (32)

Hence, by adding (31) to (32), we obtain the desired result (5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djida, JD., Mophou, G. & Area, I. Optimal Control of Diffusion Equation with Fractional Time Derivative with Nonlocal and Nonsingular Mittag-Leffler Kernel. J Optim Theory Appl 182, 540–557 (2019). https://doi.org/10.1007/s10957-018-1305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1305-6

Keywords

Mathematics Subject Classification

Navigation