Skip to main content
Log in

Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A local convergence result for an abstract descent method is proved. The sequence of iterates is attracted by a local (or global) minimum, stays in its neighborhood, and converges within this neighborhood. This result allows algorithms to exploit local properties of the objective function. In particular, the abstract theory in this paper applies to the inertial forward–backward splitting method: iPiano—a generalization of the Heavy-ball method. Moreover, it reveals an equivalence between iPiano and inertial averaged/alternating proximal minimization and projection methods. Key for this equivalence is the attraction to a local minimum within a neighborhood and the fact that, for a prox-regular function, the gradient of the Moreau envelope is locally Lipschitz continuous and expressible in terms of the proximal mapping. In a numerical feasibility problem, the inertial alternating projection method significantly outperforms its non-inertial variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For the exact statements, we provide accurate references.

  2. The error is measured after projecting the current iterate to the set of rank R matrices.

  3. The heuristic version of Douglas–Rachford splitting in [39] guarantees boundedness of the iterates. We set \(\gamma =150\gamma _0\) and update \(\gamma \) by \(\max (\gamma /2,0.9999\gamma _0)\) if \(\Vert y^k- y^{k-1} \Vert _{} > t/k\). We refer to [39] for the meaning of \(y^k\). Since the proposed value \(t=1000\) did not work well in our experiment, we optimized t manually. \(t=75\) worked best.

References

  1. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  2. Zavriev, S., Kostyuk, F.: Heavy-ball method in nonconvex optimization problems. Comput. Math. Model. 4(4), 336–341 (1993)

    Article  MATH  Google Scholar 

  3. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for non-convex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ochs, P.: Long Term Motion Analysis for Object Level Grouping and Nonsmooth Optimization Methods. Ph.D. thesis, Albert–Ludwigs–Universität Freiburg (2015)

  5. Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348(5), 1805–1838 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Poliquin, R.A.: Integration of subdifferentials of nonconvex functions. Nonlinear Anal.: Theory Methods Appl. 17(4), 385–398 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Berlin (1998)

    MATH  Google Scholar 

  8. Attouch, H., Bolte, J., Svaiter, B.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Annales de l’institut Fourier 48(3), 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In: Les Équations aux Dérivées Partielles, pp. 87–89. Éditions du centre National de la Recherche Scientifique, Paris (1963)

  11. Łojasiewicz, S.: Sur la géométrie semi- et sous- analytique. Annales de l’institut Fourier 43(5), 1575–1595 (1993)

    Article  MATH  Google Scholar 

  12. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  15. Bolte, J., Daniilidis, A., Lewis, A.: A nonsmooth Morse-Sard theorem for subanalytic functions. J. Math. Anal. Appl. 321(2), 729–740 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. den Dries, L.V.: Tame Topology and -Minimal Structures, London Mathematical Society Lecture Notes Series, vol. 248. Cambridge University Press, Cambridge (1998)

  17. Absil, P., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1), 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bolte, J., Daniilidis, A., Ley, A., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362, 3319–3363 (2010)

    Article  MATH  Google Scholar 

  20. Bento, G.C., Soubeyran, A.: A generalized inexact proximal point method for nonsmooth functions that satisfy the Kurdyka–Łojasiewicz inequality. Set-Valued Var. Anal. 23(3), 501–517 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Noll, D.: Convergence of non-smooth descent methods using the Kurdyka–Łojasiewicz inequality. J. Optim. Theory Appl. 160(2), 553–572 (2013)

    Article  MATH  Google Scholar 

  22. Hosseini, S.: Convergence of nonsmooth descent methods via Kurdyka–Łojasiewicz inequality on Riemannian manifolds. Tech. Rep. 1523, Institut für Numerische Simulation, Rheinische Friedrich–Wilhelms–Universität Bonn, Bonn, Germany (2015)

  23. Chouzenoux, E., Pesquet, J.C., Repetti, A.: Variable metric forward–backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bonettini, S., Loris, I., Porta, F., Prato, M., Rebegoldi, S.: On the Convergence of Variable Metric Line-Search Based Proximal-Gradient Method Under the Kurdyka–Lojasiewicz inequality. arXiv:1605.03791 [math] (2016)

  25. Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. J. Sci. Comput. 72(2), 700–734 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chouzenoux, E., Pesquet, J.C., Repetti, A.: A block coordinate variable metric forward–backward algorithm. J. Glob. Optim. 66(3), 457–485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frankel, P., Garrigos, G., Peypouquet, J.: Splitting methods with variable metric for Kurdyka–Łojasiewicz functions and general convergence rates. J. Optim. Theory Appl. 165(3), 874–900 (2014)

    Article  MATH  Google Scholar 

  28. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bot, R.I., Csetnek, E.R., László, S.: An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions. EURO J. Comput. Optim. 4(1), 3–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ochs, P.: Unifying Abstract Inexact Convergence Theorems for Descent Methods and Block Coordinate Variable Metric iPiano. arXiv:1602.07283 [math] (2016)

  32. Bot, R.I., Csetnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171(2), 600–616 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liang, J., Fadili, J., Peyré, G.: A Multi-step Inertial Forward–Backward Splitting Method for Non-convex Optimization. arXiv:1606.02118 [math] (2016)

  34. Johnstone, P.R., Moulin, P.: Convergence Rates of Inertial Splitting Schemes for Nonconvex Composite Optimization. arXiv:1609.03626v1 [cs, math] (2016)

  35. Li, H., Lin, Z.: Accelerated proximal gradient method for nonconvex programming. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems (NIPS), pp. 379–387 (2015)

  36. Stella, L., Themelis, A., Patrinos, P.: Forward–backward quasi-Newton methods for nonsmooth optimization problems. Comput. Optim. Appl. 67(3), 443–487 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434–2460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, G., Liu, T., Pong, T.K.: Peaceman-Rachford splitting for a class of nonconvex optimization problems. Comput. Optim. Appl. 68(2), 407–436 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, G., Pong, T.K.: Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems. Math. Program. 159(1), 371–401 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision. SIAM J. Imaging Sci. 8(1), 331–372 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bolte, J., Pauwels, E.: Majorization–minimization procedures and convergence of SQP methods for semi-algebraic and tame programs. Math. Oper. Res. 41(2), 442–465 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, G., Pong, T.: Calculus of the exponent of Kurdyka–Łojasiewicz Inequality and its applications to linear convergence of first-order methods. Found. Comput. Math. (2017). https://doi.org/10.1007/s10208-017-9366-8

  43. Merlet, B., Pierre, M.: Convergence to equilibrium for the backward Euler scheme and applications. Commun. Pure Appl. Anal. 9(3), 685–702 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imaging Sci. 9(4), 1756–1787 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Poliquin, R., Rockafellar, R., Thibault, L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352(11), 5231–5249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Daniilidis, A., Lewis, A., Malick, J., Sendov, H.: Prox-regularity of spectral functions and spectral sets. J. Convex Anal. 15(3), 547–560 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Bolte, J., Nguyen, T., Peypouquet, J., Suter, B.: From error bounds to the complexity of first-order descent methods for convex functions. Math. Program. 165(2), 471–507 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, G., Mordukhovich, B., Pham, T.: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors. Math. Program. 153(2), 333–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Li, G., Mordukhovich, B., Nghia, T., Pham, T.: Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates. Math. Program. 1–34 (2016)

  51. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, BErlin (2011)

    Book  MATH  Google Scholar 

  52. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9(4), 485–513 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Jourani, A., Thibault, L., Zagrodny, D.: Differential properties of the Moreau envelope. J. Funct. Anal. 266(3), 1185–1237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lewis, A., Malick, J.: Alternating projections on manifolds. Math. Oper. Res. 33(1), 216–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lee, J.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics 218. Springer, New York (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ochs.

Additional information

Communicated by Regina S. Burachik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochs, P. Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization. J Optim Theory Appl 177, 153–180 (2018). https://doi.org/10.1007/s10957-018-1272-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1272-y

Keywords

Mathematics Subject Classification

Navigation