Skip to main content
Log in

Necessary and Sufficient Optimality Conditions for Regular–Singular Stochastic Differential Games with Asymmetric Information

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider a class of regular–singular stochastic differential games arising in the optimal investment and dividend problem of an insurer under model uncertainty. The information available to the two players is asymmetric partial information and the control variable of each player consists of two components: regular control and singular control. We establish the necessary and sufficient optimality conditions for the saddle point of the zero-sum game. Then, as an application, these conditions are applied to an optimal investment and dividend problem of an insurer under model uncertainty. Furthermore, we generalize our results to the nonzero-sum regular–singular game with asymmetric information, and then the Nash equilibrium point is characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Markowitz, H.: Portfolio selection*. J. Finance 7, 77–91 (1952)

    Google Scholar 

  2. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  3. Højgaard, B., Taksar, M.: Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy. Quant. Finance 4, 315–327 (2004)

    Article  MathSciNet  Google Scholar 

  4. Azcue, P., Muler, N.: Optimal investment policy and dividend payment strategy in an insurance company. Ann. Appl. Probab. 20, 1253–1302 (2010)

    Article  MathSciNet  Google Scholar 

  5. Jin, Z., Yin, G.: Numerical methods for optimal dividend payment and investment strategies of Markov-modulated jump diffusion models with regular and singular controls. J. Optim. Theory Appl. 159, 246–271 (2013)

    Article  MathSciNet  Google Scholar 

  6. Wang, Y., Zhao, Y., Wang, L., Song, A., Ma, Y.: Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. J. Ind. Manag. Optim. https://doi.org/10.3934/jimo.2017067 (2017)

    Article  MathSciNet  Google Scholar 

  7. Hansen, L.P., Sargent, T.J.: Robust control and model uncertainty. Amer. Econ. Rev. 91, 60–66 (2001)

    Article  Google Scholar 

  8. Cont, R.: Model uncertainty and its impact on the pricing of derivative instruments. Math. Finance 16, 519–547 (2006)

    Article  MathSciNet  Google Scholar 

  9. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  10. Zhang, X., Siu, T.K.: Optimal investment and reinsurance of an insurer with model uncertainty. Insur. Math. Econ. 45, 81–88 (2009)

    Article  MathSciNet  Google Scholar 

  11. Elliott, R.J., Siu, T.K.: A stochastic differential game for optimal investment of an insurer with regime switching. Quant. Finance 11, 365–380 (2011)

    Article  MathSciNet  Google Scholar 

  12. Peng, X., Chen, F., Hu, Y.: Optimal investment, consumption and proportional reinsurance under model uncertainty. Insur. Math. Econ. 59, 222–234 (2014)

    Article  MathSciNet  Google Scholar 

  13. Wang, Y., Wang, L.: Forward-backward stochastic differential games for optimal investment and dividend problem of an insurer under model uncertainty. Appl. Math. Model. https://doi.org/10.1016/j.apm.2017.07.027 (2017)

    Article  MathSciNet  Google Scholar 

  14. An, T.T.K., Øksendal, B.: Maximum principle for stochastic differential games with partial information. J. Optim. Theory Appl. 139, 463–483 (2008)

    Article  MathSciNet  Google Scholar 

  15. Øksendal, B., Sulèm, A.: Singular stochastic control and optimal stopping with partial information of Itô-Lévy processes. SIAM J. Control Optim. 50, 2254–2287 (2012)

    Article  MathSciNet  Google Scholar 

  16. Wang, Y., Song, A., Feng, E.: A maximum principle via Malliavin calculus for combined stochastic control and impulse control of forward-backward systems. Asian J. Control 17, 1798–1809 (2015)

    Article  MathSciNet  Google Scholar 

  17. Øksendal, B., Sulèm, A.: Applied Stochastic Control of Jump Diffusions. Springer, Berlin (2007)

    Book  Google Scholar 

  18. Cadenillas, A., Haussmann, U.G.: The stochastic maximum principle for a singular control problem. Stochastics 49, 211–237 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Dufour, F., Miller, B.: Maximum principle for singular stochastic control problems. SIAM J. Control Optim. 45, 668–698 (2006)

    Article  MathSciNet  Google Scholar 

  20. Bahlali, S., Djehiche, B., Mezerdi, B.: The relaxed stochastic maximum principle in singular optimal control of diffusions. SIAM J. Control Optim. 46, 427–444 (2007)

    Article  MathSciNet  Google Scholar 

  21. Andersson, D.: The relaxed general maximum principle for singular optimal control of diffusions. Syst. Control Lett. 58, 76–82 (2009)

    Article  MathSciNet  Google Scholar 

  22. Hafayed, M., Abbas, S.: On near-optimal mean-field stochastic singular controls: necessary and sufficient conditions for near-optimality. J. Optim. Theory Appl. 160, 778–808 (2014)

    Article  MathSciNet  Google Scholar 

  23. Li, R., Liu, B.: Necessary and sufficient near-optimal conditions for mean-field singular stochastic controls. Asian J. Control 17, 1209–1221 (2015)

    Article  MathSciNet  Google Scholar 

  24. Zhang, F.: Stochastic maximum principle for mixed regular-singular control problems of forward-backward systems. J. Syst. Sci. Complex. 26, 886–901 (2013)

    Article  MathSciNet  Google Scholar 

  25. Hafayed, M., Abba, A., Abbas, S.: On partial-information optimal singular control problem for mean-field stochastic differential equations driven by Teugels martingales measures. Int. J. Control 89, 397–410 (2015)

    Article  MathSciNet  Google Scholar 

  26. Hu, Y., Øksendal, B., Sulèm, A.: Singular mean-field control games with applications to optimal harvesting and investment problems. arXiv:1406.1863, (2014)

  27. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  28. Dufresne, F., Gerber, H.U.: Risk theory for the compound Poisson process that is perturbed by diffusion. Insur. Math. Econ. 10, 51–59 (1991)

    Article  MathSciNet  Google Scholar 

  29. Shi, J.T., Wang, G.C., Xiong, J.: Leader-follower stochastic differential game with asymmetric information and applications. Automatica 63, 60–73 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation for the Youth of China (Grants 11701064, 11301081, 11401073), the Science Research Project of Educational Department of Liaoning Province of China (Grants L2014188, L2015097 and L2014186), the Fundamental Research Funds for Central Universities in China (Grant DUT15LK25), and the Research Funding for Doctor Start-Up Program of Liaoning Province (Grant 201601245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Communicated by Negash G. Medhin.

Appendices

Appendix A: Proof of Theorem 3.2

For convenience, we use the short-hand notations:

$$\begin{aligned} \begin{aligned} \bigtriangledown _{x}\hat{f}(t)&=\bigtriangledown _{x}f \left( t,\hat{X}(t),\hat{u}^{(1)}(t),\hat{u}^{(2)}(t)\right) \\ \text {and}\ \ \bigtriangledown _{u^{(1)}}\hat{f}(t)&=\bigtriangledown _{u^{(1)}}f\left( t,\hat{X}(t),\hat{u}^{(1)}(t),\hat{u}^{(2)}(t)\right) \end{aligned} \end{aligned}$$

and similarly for other gradients.

Suppose that \(\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}\times \mathcal {A}^{(2)}_{\mathcal {G}}\) is a saddle point of the games (8). Then,

$$\begin{aligned} \lim _{y\rightarrow 0^{+}}\frac{1}{y}\left[ \mathcal {J}\left( \hat{u}^{(1)}+y\beta ^{(1)},\hat{\xi }^{(1)}+y\varsigma ^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) -\mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \right] \le 0 \end{aligned}$$
(46)

holds for all bounded \(\left( \beta ^{(1)},\varsigma ^{(1)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}\). According to the definition of \(\mathcal {J}\) in (7), it follows from (46) that

$$\begin{aligned}&E\left[ \int _{0}^{T}\left\{ \bigtriangledown _{x}\hat{f}\left( t\right) ^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t) +\bigtriangledown _{u^{(1)}}\hat{f}\left( t\right) ^{T}\beta ^{(1)}(t) \right\} \mathrm{d}t\right. \nonumber \\&\quad +\bigtriangledown g(\hat{X}(T))^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(T) +\sum _{l=1}^{n}\int _{0}^{T}\bigtriangledown _{x}h_{l}(t,\hat{X}(t)) \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\mathrm{d}\hat{\xi }^{(1)}_{l}(t) \nonumber \\&\quad \left. +\int _{0}^{T}h(t,\hat{X}(t))\mathrm{d}\varsigma ^{(1)}(t)+\sum _{l=1}^{n}\int _{0}^{T}\bigtriangledown _{x}k_{l}(t,\hat{X}(t)) \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\mathrm{d}\hat{\xi }^{(2)}_{l}(t) \right] \le 0. \end{aligned}$$
(47)

Now, by applying Itô formula to \(\bigtriangledown g(X(T))^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(T)\), we obtain

$$\begin{aligned}&E\left[ \bigtriangledown g(\hat{X}(T))^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(T)\right] = E\left[ \hat{p}(T)^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(T)\right] \nonumber \\&\quad = E\left[ \sum _{j=1}^{n}\left\{ \int _{0}^{T}\left[ \hat{p}_{j}(t)\left( \triangledown _{x}\hat{b}_{j}(t)^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t) +\triangledown _{u^{(1)}}\hat{b}_{j}(t)^{T}\beta ^{(1)}(t)\right) \right. \right. \right. \nonumber \\&\qquad +\sum _{l=1}^{n}\hat{q}_{jl}(t)\left( \triangledown _{x}\hat{\sigma }_{jl}(t)^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t) +\triangledown _{u^{(1)}}\hat{\sigma }_{jl}(t)^{T}\beta ^{(1)}(t)\right) \nonumber \\&\qquad +\sum _{l=1}^{n}\hat{\tilde{q}}_{jl}(t)\left( \triangledown _{x}\hat{\varpi }_{jl}(t)^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t)+\triangledown _{u^{(1)}}\hat{\varpi }_{jl}(t)^{T}\beta ^{(1)}(t)\right) \nonumber \\&\qquad \left. +\sum _{l=1}^{n}\int _{\mathbb {R}}\hat{r}_{jl}(t,z)\left( \triangledown _{x}\hat{\gamma }_{jl}(t,z)^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t) {+}\triangledown _{u^{(1)}}\hat{\gamma }_{jl}(t,z)^{T}\beta ^{(1)}(t)\right) \nu _{l}(\mathrm{d}z)\right] \mathrm{d}t \nonumber \\&\qquad -\left( \triangledown _{x} \hat{H}\left( t\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right) _{j} \breve{X}_{j}^{\left( u^{(1)},\xi ^{(1)}\right) }(t) \nonumber \\&\qquad +\,\sum _{l=1}^{n}\hat{p}_{j}(t)\triangledown _{x}\alpha _{jl}(t,\hat{X}(t))^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\mathrm{d}\hat{\xi }^{(1)}_{l}(t) \nonumber \\&\qquad +\sum _{l=1}^{n}\hat{p}_{j}(t)\alpha _{jl}(t,\hat{X}(t))\mathrm{d}\varsigma ^{(1)}_{l}(t) \nonumber \\&\qquad +\sum _{l=1}^{n}\hat{p}_{j}(t)\triangledown _{x}\lambda _{jl}(t,\hat{X}(t))^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\mathrm{d}\hat{\xi }^{(2)}_{l}(t) \nonumber \\&\qquad +\sum _{0\le t\le T}\sum _{l,m=1}^{n}\left( \triangledown _{x}\alpha _{jl}(\{t\},\hat{X}(t))^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\triangle \hat{\xi }^{(1)}_{l}(t) \right. \nonumber \\&\qquad +\,\triangledown _{x}\lambda _{jl}(\{t\},\hat{X}(t))^{T} \breve{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\triangle \hat{\xi }^{(2)}_{l}(t) \nonumber \\&\qquad \left. \left. \left. +\,\alpha _{jl}(\{t\},\hat{X}(t))\triangle \varsigma ^{(1)}_{l}(t)\right) \int _{\mathbb {R}_{0}}\hat{r}_{jm}(\{t\},z)N_{m}(\{t\},\mathrm{d}z)\right\} \!\!\right] , \end{aligned}$$
(48)

where \(\triangle \varsigma _{l}^{(i)}(t)=\varsigma _{l}^{(i)}(t)-\varsigma _{l}^{(i)}(t-)\) is the pure discontinuous part of \(\varsigma _{l}^{(i)}(t)\) and \(\varsigma _{l}^{(i),C}(t)\) is the continuous part of \(\varsigma _{l}^{(i)}(t)\), \(i=1,2\).

Next, by the definition of Hamiltonian (9), we have

$$\begin{aligned}&\bigtriangledown _{x}H\left( t,x,u^{(1)},u^{(2)},p,q,\tilde{q},r(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\xi ^{(1)},\mathrm{d}\xi ^{(2)}\right) \nonumber \\&\quad = \left[ \bigtriangledown _{x}f\left( t\right) +\sum _{j=1}^{n}\bigtriangledown _{x}b_{j}\left( t\right) p_{j} + \sum _{j,l=1}^{n}\bigtriangledown _{x}\sigma _{jl}\left( t\right) q_{jl}\right. \nonumber \\&\qquad \left. +\,\sum _{j,l=1}^{n}\int _{\mathbb {R}}\bigtriangledown _{x}\gamma _{jl}\left( t,z\right) r_{jl}(t,z)\nu _{l}(\mathrm{d}z) +\sum _{j,l=1}^{n}\bigtriangledown _{x}\varpi _{jl}\left( t\right) \tilde{q}_{jl} \right] \mathrm{d}t \nonumber \\&\qquad +\,\sum _{l=1}^{n}\left[ \left( \sum _{j=1}^{n} p_{j}\bigtriangledown _{x}\alpha _{jl}(t,x)+\bigtriangledown _{x}h_{l}(t,x)\right) \mathrm{d}\xi _{l}^{(1)}(t) \right. \nonumber \\&\qquad \left. +\,\left( \sum _{j=1}^{n}p_{j}\bigtriangledown _{x}\lambda _{jl}(t,x)+\bigtriangledown _{x}k_{l}(t,x)\right) \mathrm{d}\xi _{l}^{(2)}(t)\right] \nonumber \\&\qquad +\,\sum _{j,l,m=1}^{n}\left[ \bigtriangledown _{x}\alpha _{jl}\left( \{t\},x\right) \triangle \xi _{l}^{(1)}(t)\right. \nonumber \\&\qquad \left. +\,\bigtriangledown _{x}\lambda _{jl}\left( \{t\},x\right) \triangle \xi _{l}^{(2)}(t)\right] \int _{\mathbb {R}_{0}}r_{jm}(\{t\},z)N_{m}(\{t\},\mathrm{d}z) \end{aligned}$$
(49)

and

$$\begin{aligned}&\bigtriangledown _{u^{(1)}}H\left( t,x,u^{(1)},u^{(2)},p,q,r(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\xi ^{(1)},\mathrm{d}\xi ^{(2)}\right) \nonumber \\&\quad =\left[ \bigtriangledown _{u^{(1)}}f\left( t\right) +\sum _{j=1}^{n}\bigtriangledown _{u^{(1)}}b_{j}\left( t\right) p_{j}+\sum _{j,l=1}^{n}\bigtriangledown _{u^{(1)}}\sigma _{jl}\left( t\right) q_{jl} \right. \nonumber \\&\qquad \left. +\sum _{j,l=1}^{n}\bigtriangledown _{u^{(1)}}\varpi _{jl}\left( t\right) \tilde{q}_{jl} +\sum _{j,l=1}^{n}\int _{\mathbb {R}}\bigtriangledown _{u^{(1)}}\gamma _{jl}\left( t,z\right) r_{jl}(t,z)\nu _{l}(\mathrm{d}z)\right] \mathrm{d}t. \end{aligned}$$
(50)

Then, substituting (48), (49), (50) into (47), we get

$$\begin{aligned}&E\left[ \int _{0}^{T}\bigtriangledown _{u^{(1)}}H\left( t,\hat{X}(t),\hat{u}^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) ^{T}\beta ^{(1)}(t) \right. \nonumber \\&\quad \left. +\int _{0}^{T}\hat{U}^{T}(t)\mathrm{d}\varsigma ^{(1),C}(t) +\sum _{0\le t\le T}\hat{V}^{T}(t)\triangle \varsigma ^{(1)}(t)\right] \le 0, \end{aligned}$$
(51)

where \(U_{l}(t)\) and \(V_{l}(t)\) are defined by (13) and (14), respectively.

Since the inequality (51) holds for all bounded \((\beta ^{(1)},\varsigma ^{(1)})\in \mathcal {A}^{(1)}_{\mathcal {G}}\), one can choose \(\varsigma ^{(1)}\equiv 0\) and hence

$$\begin{aligned} E\left[ \int _{0}^{T}\bigtriangledown _{u^{(1)}}H\left( t,\hat{X}(t),\hat{u}^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{\tilde{q}},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) ^{T}\beta ^{(1)}(t)\right] \le 0 . \end{aligned}$$
(52)

In particular, given \(t\in [0,T]\), the inequality (52) holds for all bounded \(\left( \beta ^{(1)}(s),0\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}\), where

$$\begin{aligned} \beta ^{(1)}(s):=\left( 0,\ldots ,\beta ^{(1)}_{j}(s),\ldots ,0\right) ,\ \ \ \ \ j=1,\ldots ,n \end{aligned}$$

with

$$\begin{aligned} \beta ^{(1)}_{j}(s)=\theta _{j}^{(1)}\chi _{[t,t+h)}(s),\ \ \ \ \ s\in [0,T]. \end{aligned}$$

Here, \(t+h\le T\) and \(\theta _{j}^{(1)}=\theta _{j}^{(1)}(\omega )\) is a bounded \(\mathcal {G}^{(1)}_{t}\)-measurable random variable. Then (52) can be written as

$$\begin{aligned} E\left[ \int _{t}^{t+h}\theta _{j}^{(1)}\frac{\partial H}{\partial u_{j}^{(1)}}\left( t,\hat{X}(t),\hat{u}^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{\tilde{q}},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right] \le 0. \end{aligned}$$
(53)

Since (53) holds for both \(\theta _{j}^{(1)}\) and \(-\theta _{j}^{(1)}\), we have

$$\begin{aligned} E\left[ \int _{t}^{t+h}\theta _{j}^{(1)}\frac{\partial H}{\partial u_{j}^{(1)}}\left( t,\hat{X}(t),\hat{u}^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{\tilde{q}},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right] =0. \end{aligned}$$
(54)

Differentiating (54) with respect to h at \(h=0\), it follows that

$$\begin{aligned} E\left[ \theta _{j}^{(1)}\frac{\partial H}{\partial u_{j}^{(1)}}\left( t,\hat{X}(t),\hat{u}^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{\tilde{q}},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right] =0 \end{aligned}$$

holds for all bounded \(\mathcal {G}^{(1)}_{t}\)-measurable random variable \(\theta _{j}^{(1)}\). As a result, we conclude that

$$\begin{aligned}&E\left[ \left. \frac{\partial H}{\partial u_{j}^{(1)}}\left( t,\hat{X}(t),\hat{u}^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{\tilde{q}},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm{d}\hat{\xi }^{(2)}\right) \right| \mathcal {G}^{(1)}_{t}\right] =0,\\&\quad j=1,\ldots ,n, \end{aligned}$$

which leads to

$$\begin{aligned} E\left[ \left. \bigtriangledown _{u^{(1)}}H\left( t,\hat{X}(t),\hat{u}^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{\tilde{q}},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right| \mathcal {G}^{(1)}_{t}\right] =0. \end{aligned}$$

Next, we prove (18) and (20). Note that the inequality (51) holds for all bounded \((\beta ^{(1)},\varsigma ^{(1)})\in \mathcal {A}^{(1)}_{\mathcal {G}}\). Thus, by letting \(\beta ^{(1)}=0\), we obtain

$$\begin{aligned} E\left[ \int _{0}^{T}\hat{U}^{T}(t)\mathrm{d}\varsigma ^{(1),C}(t) +\sum _{0\le t\le T}\hat{V}^{T}(t)\triangle \varsigma ^{(1)}(t)\right] \le 0. \end{aligned}$$
(55)

In order to prove (18), we choose \(\varsigma ^{(1)}\) in the following way:

$$\begin{aligned} \varsigma ^{(1)}(t):=\left( 0,\ldots ,\varsigma ^{(1)}_{l}(t),\ldots ,0\right) ,\quad l=1,\ldots ,n. \end{aligned}$$

with

$$\begin{aligned} \mathrm{d}\varsigma _{l}^{(1)}(t)=a_{l}^{(1)}(t)\mathrm{d}t, \quad t\in [0,T], \end{aligned}$$

where \(a_{l}^{(1)}(t)\ge 0\) is continuous \(\mathcal {G}^{(1)}_{t}\)-adapted stochastic process. Then, it follows from (55) that

$$\begin{aligned} E\left[ \int _{0}^{T}\hat{U}_{l}(t)a_{l}^{(1)}(t)\mathrm{d}t\right] \le 0 \end{aligned}$$
(56)

holds for all \(\mathcal {G}^{(1)}_{t}\)-adapted \(a_{l}^{(1)}(t)\ge 0\), which implies that

$$\begin{aligned} E\left[ \left. \hat{U}_{l}(t)\right| \ \mathcal {G}^{(1)}_{t}\right] \le 0, \quad \text {for}\ \text {almost} \ \text {all}\quad t\in [0,T],\quad l=1,2,\ldots ,n. \end{aligned}$$
(57)

Moreover, by choosing

$$\begin{aligned} \varsigma ^{(1)}(t):=\left( 0,\ldots ,\varsigma ^{(1)}_{l}(t),\ldots ,0\right) ,\quad l=1,\ldots ,n, \end{aligned}$$

where

$$\begin{aligned} \varsigma _{l}^{(1)}(t)=\hat{\xi }_{l}^{(1),C}(t), \quad t\in [0,T], \end{aligned}$$

together with (55), we have

$$\begin{aligned} E\left[ \int _{0}^{T}\hat{U}_{l}(t)\mathrm{d}\hat{\xi }_{l}^{(1),C}(t)\right] \le 0. \end{aligned}$$
(58)

Similarly, by letting \(\varsigma _{l}^{(1)}(t)=-\hat{\xi }_{l}^{(1),C}(t)\), we get

$$\begin{aligned} E\left[ \int _{0}^{T}\hat{U}_{l}(t)\mathrm{d}\hat{\xi }_{l}^{(1),C}(t)\right] \ge 0. \end{aligned}$$
(59)

Combining (58) and (59), we obtain

$$\begin{aligned} E\left[ \int _{0}^{T}\hat{U}_{l}(t)\mathrm{d}\hat{\xi }_{l}^{(1),C}(t)\right] = E\left[ \int _{0}^{T}E\left[ \left. \hat{U}_{l}(t)\right| \ \mathcal {G}^{(1)}_{t}\right] \mathrm{d}\hat{\xi }_{l}^{(1),C}(t)\right] =0. \end{aligned}$$
(60)

Since \(\hat{\xi }_{l}^{(1),C}(\cdot )\) is a singular control, we have \(\mathrm{d}\hat{\xi }_{l}^{(1),C}(t)\ge 0\). Hence, it follows from (57) and (60) that

$$\begin{aligned} E\left[ \left. \hat{U}_{l}(t)\right| \mathcal {G}^{(1)}_{t}\right] \mathrm{d}\hat{\xi }_{l}^{(1),C}(t)=0,\quad t\in [0,T],\quad l=1,2,\ldots ,n. \end{aligned}$$

In order to prove (20), we fix \(t\in [0,T]\) and choose \(\varsigma ^{(1)}:=\left( 0,\ldots ,\varsigma ^{(1)}_{l},\ldots ,0\right) \), \(l=1,2,\ldots ,n\), such that

$$\begin{aligned} \mathrm{d}\varsigma ^{(1)}_{l}(s)=a^{(1)}_{l}(\omega )\delta _{t}(s),\quad s\in [0,T], \end{aligned}$$

where \(a^{(1)}_{l}(\omega )\ge 0\) is bounded \(\mathcal {G}^{(1)}_{t}\)-measurable and \(\delta _{t}(s)\) is the unit point mass at t. In this case, it follows from (55) that

$$\begin{aligned} E\left[ \hat{V}_{l}(t)a^{(1)}_{l}(\omega )\right] \le 0 \end{aligned}$$

holds for all bounded \(\mathcal {G}^{(1)}_{t}\)-measurable \(a^{(1)}_{l}(\omega )\ge 0\). This gives

$$\begin{aligned} E\left[ \left. \hat{V}_{l}(t)\right| \ \mathcal {G}^{(1)}_{t}\right] \le 0, \quad l=1,2,\ldots ,n. \end{aligned}$$
(61)

Let \(\xi _{l}^{(1),d}(t)\) denote the pure discontinuous part of \(\xi _{l}^{(1)}\), \(l=1,2,\ldots ,n\). Choosing \(\varsigma _{l}^{(1)}(t)=\xi _{l}^{(1),d}(t)\) and \(\varsigma _{l}^{(1)}(t)=-\xi _{l}^{(1),d}(t)\) respectively, it is clear from (55) that

$$\begin{aligned} E\left[ \sum _{0\le t\le T}\hat{V}_{l}(t)\triangle \xi _{l}^{(1)}(t)\right] =E\left[ \sum _{0<t\le T}E\left[ \left. \hat{V}_{l}(t)\right| \ \mathcal {G}^{(1)}_{t}\right] \triangle \xi _{l}^{(1)}(t)\right] =0. \end{aligned}$$
(62)

It is obvious that \(\triangle \xi _{l}^{(1)}(t)\ge 0\), for \(\xi _{l}^{(1)}(\cdot )\) is a singular control. Thus, we conclude from (61) and (62) that

$$\begin{aligned} E\left[ \left. \hat{V}_{l}(t)\right| \ \mathcal {G}^{(1)}_{t}\right] \triangle \xi _{l}^{(1)}(t)=0 \quad \text {for}\ \text {all} \quad t\in [0,T], \quad l=1,2,\ldots ,n. \end{aligned}$$

Next, suppose that

$$\begin{aligned} \lim _{y\rightarrow 0^{+}}\frac{1}{y}\left[ \mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)}+y\beta ^{(2)},\hat{\xi }^{(2)}+y\varsigma ^{(2)}\right) -\mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \right] \ge 0 \end{aligned}$$
(63)

holds for all bounded \(\left( \beta ^{(2)},\varsigma ^{(2)}\right) \in \mathcal {A}^{(2)}_{\mathcal {G}}\). Then, by following a similar approach, we have (19), (21) and

$$\begin{aligned} E\left[ \left. \bigtriangledown _{u^{(2)}}H\left( t,\hat{X}(t),\hat{u}^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{\tilde{q}},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right| \mathcal {G}^{(2)}_{t}\right] =0. \end{aligned}$$

This completes the proof. \(\square \)

Appendix B: Proof of Theorem 3.3

In the following, we use the notation

$$\begin{aligned}&\hat{H}(t)\left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) =H\left( t,\hat{x},\hat{u}^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{\tilde{q}},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) ,\\&H\left( t,u^{(1)}\right) \left( \mathrm{d}t,\mathrm{d}\xi ^{(1)},\mathrm{d}\hat{\xi }^{(2)}\right) \\&\quad =H\left( t,x^{\left( u^{(1)},\xi ^{(1)}\right) },u^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{\tilde{q}},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\xi ^{(1)},\mathrm{d}\hat{\xi }^{(2)}\right) ,\\&H\left( t,u^{(2)}\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm{d}\xi ^{(2)}\right) \\&\quad =H\left( t,x^{\left( u^{(2)},\xi ^{(2)}\right) },\hat{u}^{(1)},u^{(2)}\hat{p},\hat{q},\hat{\tilde{q}},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm{d}\xi ^{(2)}\right) \end{aligned}$$

and similarly with \(\hat{f}(t)\), \(f\left( t,X^{\left( u^{(i)},\xi ^{(i)}\right) }(t),u^{(i)}\right) \), \(\hat{b}(t)\), \(b\left( t,X^{\left( u^{(i)},\xi ^{(i)}\right) }(t),u^{(i)}\right) \), \(\hat{\sigma }(t)\), \(\sigma \left( t,X^{\left( u^{(i)},\xi ^{(i)}\right) }(t),u^{(i)}\right) \), \(\hat{\gamma }(t,z)\), \(\gamma \left( t,X^{\left( u^{(i)},\xi ^{(i)}\right) }(t),u^{(i)},z\right) \), \(i=1,2\).

[I] By the definition of \(\mathcal {J}\left( u^{(1)},\xi ^{(1)};u^{(2)},\xi ^{(2)}\right) \), we have

$$\begin{aligned} \mathcal {J}\left( u^{(1)},\xi ^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) -\mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) =I_{1}+I_{2}+I_{3}+I_{4}, \end{aligned}$$
(64)

where

$$\begin{aligned} I_{1}&= E\left[ \int _{0}^{T}\left( f\left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t),u^{(1)}\right) -\hat{f}(t)\right) \mathrm{d}t\right] ,\\ I_{2}&= E\left[ g(X^{\left( u^{(1)},\xi ^{(1)}\right) }(T))-g(\hat{X}(T))\right] ,\\ I_{3}&= E\left[ \int _{0}^{T} h\left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) \mathrm{d}\xi ^{(1)}(t)-\int _{0}^{T} h\left( t,\hat{X}(t)\right) \mathrm{d}\hat{\xi }^{(1)}(t)\right] ,\\ I_{4}&= E\left[ \int _{0}^{T}\left( k(t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t))-k(t,\hat{X}(t))\right) \mathrm{d}\hat{\xi }^{(2)}(t)\right] . \end{aligned}$$

It follows from the definition of Hamiltonian (9) that

$$\begin{aligned} I_{1}&= E\left[ \int _{0}^{T} H\left( t,u^{(1)}\right) \left( \mathrm{d}t,\mathrm{d}\xi ^{(1)},\mathrm{d}\hat{\xi }^{(2)}\right) - \hat{H}(t)\left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right. \nonumber \\&\quad \ -\,\int _{0}^{T}\left\{ \left( b\left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t), u^{(1)}\right) -\hat{b}(t)\right) ^{T}\hat{p}(t) \right. \nonumber \\&\quad \ -\,tr\left[ \left( \sigma \left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t),u^{(1)}\right) -\hat{\sigma }(t)\right) ^{T} \hat{q}(t)\right] \nonumber \\&\quad \ -\,\sum _{j,l=1}^{n}\int _{\mathbb {R}}\left( \gamma _{j,l}\left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t),u^{(1)},z\right) -\hat{\gamma }_{j,l}(t,z)\right) r_{j,l}(t,z)\nu _{l}(\mathrm{d}z) \nonumber \\&\quad \ \left. -\,\,tr\left[ \left( \varpi \left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t),u^{(1)}\right) -\hat{\varpi }(t)\right) ^{T} \hat{\tilde{q}}(t)\right] \right\} \mathrm{d}t \nonumber \\&\quad \ +\,\int _{0}^{T}\left\{ \hat{p}^{T}(t)\alpha (t,\hat{X}(t))+h(t,\hat{X}(t)) \right\} \mathrm{d}\hat{\xi }^{(1)}(t) \nonumber \\&\quad \ -\,\int _{0}^{T}\left\{ \hat{p}^{T}(t)\alpha \left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) +h\left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) \right\} \mathrm{d}\xi ^{(1)}(t) \nonumber \\&\quad \ -\,\int _{0}^{T}\left\{ \hat{p}^{T}(t)\left[ \lambda \left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) -\lambda (t,\hat{X}(t))\right] \right. \nonumber \\&\quad \ \left. +\,\left[ k\left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) -k(t,\hat{X}(t))\right] \right\} \mathrm{d}\hat{\xi }^{(2)}(t) \nonumber \\&\quad \ -\,\sum _{0<t\le T}\sum _{j,l,m=1}^{n}\left( \alpha _{jl}\left( \{t\},X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) \triangle \xi _{l}^{(1)}(t)\right. \nonumber \\&\quad \ \left. -\,\alpha _{jl}(\{t\},\hat{X}(t))\triangle \hat{\xi }_{l}^{(1)}(t) \right) \int _{\mathbb {R}_{0}}\hat{r}_{jm}(\{t\},z)N_{m}(\{t\},\mathrm{d}z) \nonumber \\&\quad \ -\,\sum _{0<t\le T}\sum _{j,l,m=1}^{n}\left( \lambda _{jl}\left( \{t\},X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) \right. \nonumber \\&\quad \ \left. \left. -\,\lambda _{jl}(\{t\},\hat{X}(t)) \right) \triangle \hat{\xi }_{l}^{(2)}(t) \int _{\mathbb {R}_{0}}\hat{r}_{jm}(\{t\},z)N_{m}(\{t\},\mathrm{d}z) \right] . \end{aligned}$$
(65)

Let \( \tilde{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t):=X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)-\hat{X}(t)\), \(0\le t\le T\). Since g(x) is concave in x, we have

$$\begin{aligned} I_{2} \leqslant&E\left[ \left( X^{\left( u^{(1)},\xi ^{(1)}\right) }(T)-\hat{X}(T)\right) ^{T}\triangledown g(\hat{X}(T)) \right] =E\left[ \left( \tilde{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(T)\right) ^{T}\hat{p}(T)\right] . \end{aligned}$$

By applying Itô formula to \(\left( \tilde{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(T)\right) ^{T}\hat{p}(T)\), we obtain

$$\begin{aligned} I_{2}&\le E\left[ \int _{0}^{T}\left\{ \hat{p}^{T}(t)\left( b\left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t),u^{(1)}\right) -\hat{b}(t)\right) \right. \right. \nonumber \\&\quad +\,tr\left[ \left( \sigma \left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t),u^{(1)}\right) -\hat{\sigma }(t)\right) ^{T}\hat{q}(t) \right] \nonumber \\&\quad +\,\sum _{j,l=1}^{n}\int _{\mathbb {R}_{0}}\left( \gamma _{jl}\left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t),z\right) -\hat{\gamma }_{jl}(t,z)\right) \hat{r}_{jl}(t,z)\nu _{l}(\mathrm{d}z) \nonumber \\&\quad \left. +\,tr\left[ \left( \varpi \left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t),u^{(1)}\right) -\hat{\varpi }(t)\right) ^{T}\hat{\tilde{q}}(t) \right] \right\} \mathrm{d}t \nonumber \\&\quad -\,\int _{0}^{T}\left( \tilde{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) ^{T} \triangledown _{x}\hat{H}(t)\left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \nonumber \\&\quad +\,\int _{0}^{T}\hat{p}^{T}(t)\alpha \left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) \mathrm{d}\xi ^{(1)}(t) -\int _{0}^{T}\hat{p}^{T}(t)\alpha (t,\hat{X}(t))\mathrm{d}\hat{\xi }^{(1)}(t) \nonumber \\&\quad +\,\int _{0}^{T}\hat{p}^{T}(t)\left\{ \lambda \left( t,X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) -\lambda (t,\hat{X}(t))\right\} \mathrm{d}\hat{\xi }^{(2)}(t) \nonumber \\&\quad +\, \sum _{0<t\le T}\sum _{j,l,m=1}^{n}\left( \alpha _{jl}\left( \{t\},X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) \triangle \xi _{l}^{(1)}(t)\right. \nonumber \\&\quad \left. -\,\quad \alpha _{jl}(\{t\},\hat{X}(t))\triangle \hat{\xi }_{l}^{(1)}(t) \right) \int _{\mathbb {R}_{0}}\hat{r}_{jm}(\{t\},z)N_{m}(\{t\},\mathrm{d}z) \nonumber \\&\quad +\, \sum _{0<t\le T}\sum _{j,l,m=1}^{n}\left( \lambda _{jl}\left( \{t\},X^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) \right. \nonumber \\&\quad \left. \left. -\,\lambda _{jl}(\{t\},\hat{X}(t)) \right) \triangle \hat{\xi }_{l}^{(2)}(t) \int _{\mathbb {R}_{0}}\hat{r}_{jm}(\{t\},z)N_{m}(\{t\},\mathrm{d}z) \right] . \end{aligned}$$
(66)

Substituting (65) and (66) into (64), we obtain

$$\begin{aligned}&\mathcal {J}\left( u^{(1)},\xi ^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) -\mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \nonumber \\&\quad \leqslant E\left[ \int _{0}^{T} H\left( t,u^{(1)}\right) \left( \mathrm{d}t,\mathrm{d}\xi ^{(1)},\mathrm{d}\hat{\xi }^{(2)}\right) -\int _{0}^{T}\hat{H}(t)\left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right. \nonumber \\&\qquad \left. -\int _{0}^{T}\left( \tilde{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\right) ^{T} \triangledown _{x}\hat{H}(t)\left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right] . \end{aligned}$$
(67)

Since \((x,u^{(1)},\xi ^{(1)})\rightarrow H\left( t,x^{\left( u^{(1)},\xi ^{(1)}\right) },u^{(1)},\hat{u}^{(2)},\hat{p},\hat{q},\hat{r}(\cdot )\right) \left( \mathrm{d}t,\mathrm{d}\xi ^{(1)},\mathrm{d}\hat{\xi }^{(2)}\right) \) is concave, we have

$$\begin{aligned}&H\left( t,u^{(1)}\right) \left( \mathrm{d}t,\mathrm{d}\xi ^{(1)},\mathrm{d}\hat{\xi }^{(2)}\right) -\hat{H}(t)\left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \\&\quad \le \left[ \triangledown _{x}\hat{H}(t)\left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right] ^{T} \tilde{X}^{\left( u^{(1)},\xi ^{(1)}\right) }(t)\\&\qquad +\left[ \triangledown _{u^{(1)}}\hat{H}(t)\left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)}, \mathrm {d}\hat{\xi }^{(2)} \right) \right] ^{T} \left( u^{(1)}(t)-\hat{u}^{(1)}(t)\right) \\&\qquad +\left[ \triangledown _{\xi ^{(1)}}\hat{H}(t)\left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right] ^{T} \left( \mathrm{d}\xi ^{(1)}(t)-\mathrm{d}\hat{\xi }^{(1)}(t)\right) . \end{aligned}$$

Then, (67) leads to

$$\begin{aligned}&\mathcal {J}\left( u^{(1)},\xi ^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) -\mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \nonumber \\&\quad =E\left[ \int _{0}^{T} E\left[ \left. \triangledown _{u^{(1)}}\hat{H}(t)\left( \mathrm{d}t,\mathrm{d}\hat{\xi }^{(1)},\mathrm {d}\hat{\xi }^{(2)}\right) \right| \ \mathcal {G}^{(1)}_{t}\right] ^{T} \left( u^{(1)}(t)-\hat{u}^{(1)}(t)\right) \right. \nonumber \\&\qquad +\int _{0}^{T}E\left[ \left. \hat{U}^{T}(t) \right| \mathcal {G}^{(1)}_{t} \right] \left( \mathrm{d}\xi ^{(1)}(t)-\mathrm{d}\hat{\xi }^{(1)}(t)\right) \nonumber \\&\qquad \left. +\sum _{0<t\le T}\sum _{l=1}^{n}E\left[ \left. \hat{V}_{l}(t)\right| \ \mathcal {G}^{(1)}_{t} \right] \left( \triangle \xi _{l}^{(1)}(t)-\triangle \hat{\xi }_{l}^{(1)}(t)\right) \right] . \end{aligned}$$
(68)

Since the control \(\left( \hat{u}^{(1)},\hat{\xi }^{(1)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}\) satisfies (17), (18) and (20), we conclude that

$$\begin{aligned}&\mathcal {J}\left( u^{(1)},\xi ^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) -\mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \\&\quad \le E\left[ \int _{0}^{T}E\left[ \left. \hat{U}^{T}(t) \right| \mathcal {G}^{(1)}_{t} \right] \mathrm{d}\xi ^{(1)}(t)+\sum _{0<t\le T}\sum _{l=1}^{n}E\left[ \left. \hat{V}_{l}(t)\right| \ \mathcal {G}^{(1)}_{t} \right] \triangle \xi ^{(1)}_{l}(t)\right] =0 \end{aligned}$$

holds for all \(\left( u^{(1)},\xi ^{(1)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}\). Therefore, we obtain (24).

[II] Following a similar argument as in [I], we conclude that

$$\begin{aligned} \mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) =\inf _{\left( u^{(2)},\xi ^{(2)}\right) \in \mathcal {A}^{(2)}_{\mathcal {G}}} \mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};u^{(2)},\xi ^{(2)}\right) \end{aligned}$$

holds, if the regular–singular control \(\left( \hat{u}^{(2)},\hat{\xi }^{(2)}\right) \in \mathcal {A}^{(2)}_{\mathcal {G}}\) satisfies (17), (18) and (20).

[III] If both (I) and (II) hold, we have

$$\begin{aligned} \mathcal {J}\left( u^{(1)},\xi ^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \le \mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \le \mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};u^{(2)},\xi ^{(2)}\right) \end{aligned}$$

for all \(\left( u^{(1)},\xi ^{(1)};u^{(2)},\xi ^{(2)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}\times \mathcal {A}^{(2)}_{\mathcal {G}}\). Then,

$$\begin{aligned} \mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \ge&\sup _{\left( u^{(1)},\xi ^{(1)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}}\mathcal {J}\left( u^{(1)},\xi ^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \\ \ge&\inf _{\left( u^{(2)},\xi ^{(2)}\right) \in \mathcal {A}^{(2)}_{\mathcal {G}}}\sup _{\left( u^{(1)},\xi ^{(1)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}} \mathcal {J}\left( u^{(1)},\xi ^{(1)};u^{(2)},\xi ^{(2)}\right) \end{aligned}$$

and

$$\begin{aligned} \mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \le&\inf _{\left( u^{(2)},\xi ^{(2)}\right) \in \mathcal {A}^{(2)}_{\mathcal {G}}}\mathcal {J}\left( \hat{u}^{(1)},\hat{\xi }^{(1)};u^{(2)},\xi ^{(2)}\right) \\ \le&\sup _{\left( u^{(1)},\xi ^{(1)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}}\inf _{\left( u^{(2)},\xi ^{(2)}\right) \in \mathcal {A}^{(2)}_{\mathcal {G}}}\mathcal {J}\left( u^{(1)},\xi ^{(1)};u^{(2)},\xi ^{(2)}\right) . \end{aligned}$$

Therefore, we conclude that

$$\begin{aligned}&\inf _{\left( u^{(2)},\xi ^{(2)}\right) \in \mathcal {A}^{(2)}_{\mathcal {G}}}\sup _{\left( u^{(1)},\xi ^{(1)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}} \mathcal {J}\left( u^{(1)},\xi ^{(1)};u^{(2)},\xi ^{(2)}\right) \\&\quad \le \sup _{\left( u^{(1)},\xi ^{(1)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}} \inf _{\left( u^{(2)},\xi ^{(2)}\right) \in \mathcal {A}^{(2)}_{\mathcal {G}}}\mathcal {J}\left( u^{(1)},\xi ^{(1)};u^{(2)},\xi ^{(2)}\right) . \end{aligned}$$

This in conjunction with the following inequality:

$$\begin{aligned}&\sup _{\left( u^{(1)},\xi ^{(1)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}}\inf _{\left( u^{(2)},\xi ^{(2)}\right) \in \mathcal {A}^{(2)}_{\mathcal {G}}}\mathcal {J}\left( u^{(1)},\xi ^{(1)};u^{(2)},\xi ^{(2)}\right) \\&\quad \le \inf _{\left( u^{(2)},\xi ^{(2)}\right) \in \mathcal {A}^{(2)}_{\mathcal {G}}}\sup _{\left( u^{(1)},\xi ^{(1)}\right) \in \mathcal {A}^{(1)}_{\mathcal {G}}} \mathcal {J}\left( u^{(1)},\xi ^{(1)};u^{(2)},\xi ^{(2)}\right) , \end{aligned}$$

gives (8). Then, \(\left( \hat{u}^{(1)},\hat{\xi }^{(1)};\hat{u}^{(2)},\hat{\xi }^{(2)}\right) \) is the saddle point of the zero-sum game (8). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, L. & Teo, K.L. Necessary and Sufficient Optimality Conditions for Regular–Singular Stochastic Differential Games with Asymmetric Information. J Optim Theory Appl 179, 501–532 (2018). https://doi.org/10.1007/s10957-018-1251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1251-3

Keywords

Mathematics Subject Classification

Navigation