Constraint Qualifications and Proper Pareto Optimality Conditions for Multiobjective Problems with Equilibrium Constraints

  • Peng Zhang
  • Jin Zhang
  • Gui-Hua Lin
  • Xinmin Yang


In this paper, we consider a class of multiobjective problems with equilibrium constraints. Our first task is to extend the existing constraint qualifications for mathematical problems with equilibrium constraints from the single-objective case to the multiobjective case, and our second task is to derive some stationarity conditions under the proper Pareto sense for the considered problem. After doing that, we devote ourselves to investigating the relationships among the extended constraint qualifications and the proper Pareto stationarity conditions.


Multiobjective problem with equilibrium constraints Constraint qualification Proper Pareto stationarity condition 

Mathematics Subject Classification

90C29 90C33 90C46 



This work was supported in part by NSFC (Nos. 11671250, 11431004, 11601458), HKBU Grants (Nos. FRG1/16-17/007, FRG2/16-17/101, RC-NACAN-ZHANG J), and Humanity and Social Science Foundation of Ministry of Education of China (No. 15YJA630034).


  1. 1.
    Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307(1), 350–369 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)CrossRefMATHGoogle Scholar
  3. 3.
    Lin, G.H., Zhang, D.L., Liang, Y.C.: Stochastic multiobjective problems with complementarity constraints and applications in healthcare management. Eur. J. Oper. Res. 226(3), 461–470 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Mordukhovich, B.S.: Multiobjective optimization problems with equilibrium constraints. Math. Program. 117(1–2), 331–354 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Siddiqui, S., Christensen, A.: Determining energy and climate market policy using multiobjective programs with equilibrium constraints. Energy 94, 316–325 (2016)CrossRefGoogle Scholar
  6. 6.
    Pandey, Y., Mishra, S.K.: On strong KKT type sufficient optimality conditions for nonsmooth multiobjective semi-infinite mathematical programming problems with equilibrium constraints. Oper. Res. Lett. 44(1), 148–151 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic, Boston (1998)CrossRefMATHGoogle Scholar
  8. 8.
    Flegel, M.L., Kanzow, C.: On the Guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54(6), 517–534 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)CrossRefMATHGoogle Scholar
  10. 10.
    Andreani, R., Haeser, G., Schuverdt, M.L.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135(1), 255–273 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Burachik, R.S., Rizvi, M.M.: On weak and strong Kuhn–Tucker conditions for smooth multiobjective optimization. J. Optim. Theory Appl. 155(2), 477–491 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II: Applications. Springer, Berlin (2006)Google Scholar
  13. 13.
    Ye, J.J., Zhu, D.L., Zhu, Q.J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7(2), 481–507 (1997)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization. Academic Press, Orlando (1985)MATHGoogle Scholar
  15. 15.
    Flegel, M.L.: Constraint Qualifications and Stationarity Concepts for Mathematical Programs with Equilibrium Constraints. PhD Thesis, Institute of Applied Mathematics and Statistics, University of Würzburg (2005)Google Scholar
  16. 16.
    Guo, L., Lin, G.H.: Notes on some constraint qualifications for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 156(3), 600–616 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ye, J.J., Zhang, J.: Enhanced Karush–Kuhn–Tucker conditions for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 163(3), 777–794 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Maeda, T.: Constraint qualifications in multiobjective optimization problems: Differentiable case. J. Optim. Theory Appl. 80(3), 483–500 (1994)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Flegel, M.L., Kanzow, C.: Abadie-type constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 124(3), 595–614 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ye, J.J.: Necessary optimality conditions for multiobjective bilevel programs. Math. Oper. Res. 36(1), 165–184 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ye, J.J., Zhu, Q.J.: Multiobjective optimization problem with variational inequality constraints. Math. Program. 96(1), 139–160 (2003)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Guo, L., Ye, J.J., Zhang, J.: Mathematical programs with geometric constraints in Banach spaces: enhanced optimality, exact penalty, and sensitivity. SIAM J. Optim. 23(4), 2295–2319 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kanzow, C., Schwartz, A.: Mathematical programs with equilibrium constraints: Enhanced Fritz John-conditions, new constraint qualifications, and improved exact penalty results. SIAM J. Optim. 20(5), 2730–2753 (2010)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ramos, A.: Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications and algorithmic consequences.
  25. 25.
    Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems, Part 1: sufficient optimality conditions. J. Optim. Theory Appl. 142(1), 147–163 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems, part 2: necessary optimality conditions. J. Optim. Theory Appl. 142(1), 165–183 (2009)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Giorgi, G., Jiménez, B., Novo, V.: Strong Kuhn–Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems. Top 17(2), 288–304 (2009)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Golestani, M., Nobakhtian, S.: Convexificators and strong Kuhn–Tucker conditions. Comput. Math. Appl. 64(4), 550–557 (2012)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Li, X.F., Zhang, J.Z.: Stronger Kuhn–Tucker type conditions in nonsmooth multiobjective optimization: locally Lipschitz case. J. Optim. Theory Appl. 127(2), 367–388 (2005)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Lu, F., Li, S.J., Zhu, S.K.: Exact penalization and strong Karush–Kuhn–Tucker conditions for nonsmooth multiobjective optimization problems. Pac. J. Optim. 12(2), 245–261 (2016)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Peng Zhang
    • 1
  • Jin Zhang
    • 2
  • Gui-Hua Lin
    • 1
  • Xinmin Yang
    • 3
  1. 1.School of ManagementShanghai UniversityShanghaiChina
  2. 2.Department of MathematicsHong Kong Baptist UniversityHong KongChina
  3. 3.College of Mathematics ScienceChongqing Normal UniversityChongqingChina

Personalised recommendations