Skip to main content

Advertisement

Log in

On Several Types of Basic Constraint Qualifications via Coderivatives for Generalized Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study several types of basic constraint qualifications in terms of Clarke/Fréchet coderivatives for generalized equations. Several necessary and/or sufficient conditions are given to ensure these constraint qualifications. It is proved that basic constraint qualification and strong basic constraint qualification for convex generalized equations can be obtained by these constraint qualifications, and the existing results on constraint qualifications for the inequality system can be deduced from the given conditions in this paper. The main work of this paper is an extension of the study on constraint qualifications from inequality systems to generalized equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Azé, D.: A unified theory for metric regularity of set-valued mappings. J. Convex Anal. 13, 225–252 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Ioffe, A.D.: Metric regularity and subdifferential calculus. Russian Math. Survey. 55(3), 103–162 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jourani, A., Thibault, L.: Coderivatives of multivalued mappings, locally compact cones and metric regularity. Nonlinear Anal. 35(7), 925–945 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, W.: Abadie’s constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7, 966–978 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Penot, J.-P.: Regularity, openess and Lipschitzian behavior of set-valued mappings. Nonlinear Anal. 13(6), 629–643 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zălinescu, C.: Weak sharp minima, well-behaving functions and global error bounds for convex inequalities in Banach spaces, in Proceedings of 12th Baikal International Conference on Optimization Methods and Their Applied Irkutsk, Russia, pp. 272–284 (2001)

  7. Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational analysis. Set Valued Anal. 12, 79–109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lyusternik, L.A.: On conditional extrema of functionals. Math. Sbornik. 41, 390–401 (1934). (in Russian)

    Google Scholar 

  9. Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and Lipschitzian properties of set-valued mappings. Trans. Am. Math. Soc. 340, 1–35 (1993)

    Article  MATH  Google Scholar 

  10. Robinson, S.M.: Normed convex processes. Trans. Am. Math. Soc. 174, 127–140 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications, Nonconvex Optimization and its Application, vol. 60. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  12. Zheng, X.Y., Ng, K.F.: Metric regularity and constraint qualifications for convex inequalities on Banach spaces. SIAM J. Optim. 14, 757–772 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zheng, X.Y., Ng, K.F.: Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces. SIAM J. Optim. 18, 437–460 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henrion, R., Outrata, J.: Calmness of constraint systems with applications. Math. Program. 104, 437–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ioffe, A.D., Outrata, V.: On metric and calmness qualification conditions in subdifferential calculus. Set Valued Anal. 16, 199–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wei, Z., Yao, J.-C., Zheng, X.Y.: Strong Abadie CQ, ACQ, calmness and linear regularity. Math. Program. 145, 97–131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zheng, X.Y., Ng, K.F.: Calmness for L-subsmooth multifunctions in Banach spaces. SIAM J. Optim. 19, 1648–1673 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boţ, R.I., Grad, S.M., Wanka, G.: A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces. Math. Nachr. 281, 1088–1107 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boţ, R.I., Grad, S.M., Wanka, G.: New regularity conditions for strong and total Fenchel–Lagrange duality in infinite dimensional spaces. Nonlinear Anal. 69, 323–336 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Burachik, R.S., Jeyakumar, V.: A new geometric condition for Fenchels duality in infinite dimensional spaces. Math. Program. Ser. B. 104, 229–233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dinh, N., Vallet, G., Nghia, T.T.A.: Farkas-type results and duality for DC programs with convex constraints. J. Convex Anal. 15, 235–262 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Fang, D.H., Li, C., Ng, K.F.: Constraint qualifications for extended Farkas’s lemmas and Lagrangian dualities in convex infinite programming. SIAM J. Optim. 20(3), 1311–1332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deutsch, F.: The role of the strong conical hull intersection property in convex optimization and approximation. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory IX, Vol. I: Theoretical Aspects, pp. 105–112. Vanderbilt University Press, Nashville (1998)

    Google Scholar 

  24. Lewis, A.S., Pang, J.S.: Error bounds for convex inequality systems. In: Crouzeix, J.P. (ed.) Generalized Convexity, Proceedings of the Fifth Sysposium on Generalized Convexity, pp. 75–110. Luminy, Marseille (1997)

    Google Scholar 

  25. Li, C., Ng, K.F.: Constraint qualification, the strong CHIP and best approximation with convex constraint in Banach spaces. SIAM J. Optim. 14, 584–607 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, C., Ng, K.F., Pong, T.K.: Constraint qualifications for convex inequality system with applications in constrained optimization. SIAM J. Optim. 19, 163–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu, H.: Characterizations of the strong basic constraint qualifications. Math. Oper. Res. 30, 956–965 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wei, Z., Yao, J.-C.: On constraint qualifications of a nonconvex inequality. Optim. Lett. (2017). https://doi.org/10.1007/s11590-017-1172-3

  29. Boţ, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19, 217–233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rodrigues, B.: The Fenchel duality theorem in Fréchet spaces. Optimization 21, 13–22 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, H.: Characterizations of local and global error bounds for convex inequalities in Banach spaces. SIAM J. Optim. 18, 309–321 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Phelps, R.R.: Convex Functions, Monotone operators and Differentiability, Lecture Notes in Math, vol. 1364. Springer, New York (1989)

    Book  Google Scholar 

  33. Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for many valuable comments which help us to improve the original presentation of this paper. The research of the first author was supported by the National Natural Science Foundations of P. R. China (Grants 11771384 and 11461080) and the Fok Ying-Tung Education Foundation (Grant 151101). The second author was partially supported by the Grant MOST 105-2115-M-039-002-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Chih Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Yao, JC. On Several Types of Basic Constraint Qualifications via Coderivatives for Generalized Equations. J Optim Theory Appl 177, 106–126 (2018). https://doi.org/10.1007/s10957-018-1231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1231-7

Keywords

Mathematics Subject Classification

Navigation