Skip to main content
Log in

Combination of Direct Methods and Homotopy in Numerical Optimal Control: Application to the Optimization of Chemotherapy in Cancer

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider a state-constrained optimal control problem of a system of two non-local partial differential equations, which is an extension of the one introduced in a previous work in mathematical oncology. The aim is to control the tumor size through chemotherapy while avoiding the emergence of resistance to the drugs. The numerical approach to solve the problem was the combination of direct methods and continuation on discretization parameters, which happen to be insufficient for the more complicated model, where diffusion is added to account for mutations. In the present paper, we propose an approach relying on changing the problem so that it can theoretically be solved thanks to a Pontryagin’s maximum principle in infinite dimension. This provides an excellent starting point for a much more reliable and efficient algorithm combining direct methods and continuations. The global idea is new and can be thought of as an alternative to other numerical optimal control techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that the evolution equation has to be understood in the mild sense

    $$\begin{aligned} n(t) = n_0 + \int ^t_0{f(s,n(s),u(s))\,{\text {d}}s.} \end{aligned}$$
  2. An extremal in the PMP is said to be normal (resp. abnormal) whenever \(p^0 \ne 0\) (resp. \(p^0 = 0\)). Here, it means that there is no abnormal extremal.

References

  1. Pouchol, C., Clairambault, J., Lorz, A., Trélat, E.: Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. Journal de Mathématiques Pures et Appliquées 116, 268–308 (2017). https://doi.org/10.1016/j.matpur.2017.10.007

    Article  MathSciNet  MATH  Google Scholar 

  2. Lorz, A., Lorenzi, T., Clairambault, J., Escargueil, A., Perthame, B.: Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. arXiv preprint arXiv:1312.6237 (2013)

  3. Fourer, R., Gay, D.M., Kernighan, B.W.: A modeling language for mathematical programming. Duxbury Press 36(5), 519–554 (2002)

    MATH  Google Scholar 

  4. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Trélat, E.: Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 154(3), 713–758 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cerf, M., Haberkorn, T., Trélat, E.: Continuation from a flat to a round earth model in the coplanar orbit transfer problem. Optimal Control Appl. Methods 33(6), 654–675 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chupin, M., Haberkorn, T., Trélat, E.: Low-thrust Lyapunov to Lyapunov and Halo to Halo with \(L^2\)-minimization. ESAIM: Math. Model. Numer. Anal. 51(3), 965–996 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gergaud, Joseph, Haberkorn, Thomas: Homotopy method for minimum consumption orbit transfer problem. ESAIM: COCV 12(2), 294–310 (2006). https://doi.org/10.1051/cocv:2006003

    MathSciNet  MATH  Google Scholar 

  9. Caillau, J.B., Daoud, B., Gergaud, J.: Minimum fuel control of the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 114(1), 137–150 (2012). https://doi.org/10.1007/s10569-012-9443-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Bulirsch, R., Nerz, E., Pesch, H.J., von Stryk, O.: Combining direct and indirect methods in optimal control: range maximization of a hang glider. In: Bulirsch, R., Miele, A., Stoer, J., Well, K. (eds.) Optimal Control. ISNM International Series of Numerical Mathematics, vol. 111. Birkhäuser, Basel (1993)

  11. Pesch, H.J.: A practical guide to the solution of real-life optimal control problems. Control Cybern. 23(1), 2 (1994)

    MathSciNet  Google Scholar 

  12. von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37(1), 357–373 (1992). https://doi.org/10.1007/BF02071065

    Article  MathSciNet  MATH  Google Scholar 

  13. Diekmann, O., et al.: A beginner’s guide to adaptive dynamics. Banach Center Publ. 63, 47–86 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Diekmann, O., Jabin, P.E., Mischler, S., Perthame, B.: The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach. Theor. Popul. Biol. 67(4), 257–271 (2005)

    Article  MATH  Google Scholar 

  15. Perthame, B.: Transport Equations in Biology. Springer, New York (2006)

    MATH  Google Scholar 

  16. Chisholm, R.H., Lorenzi, T., Clairambault, J.: Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation. Biochimica et Biophysica Acta (BBA) - General Subjects 1860(11), 2627–2645 (2016). https://doi.org/10.1016/j.bbagen.2016.06.009

    Article  Google Scholar 

  17. Schättler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2972-6

    Book  MATH  Google Scholar 

  18. Costa, M., Boldrini, J., Bassanezi, R.: Optimal chemical control of populations developing drug resistance. Math. Med. Biol. 9(3), 215–226 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kimmel, M., Świerniak, A.: Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance. In: Friedman, A. (ed.) Tutorials in Mathematical Biosciences III. Lecture Notes in Mathematics, vol. 1872, pp. 185–221. Springer, Berlin (2006)

    Google Scholar 

  20. Ledzewicz, U., Schättler, H.: Drug resistance in cancer chemotherapy as an optimal control problem. Discrete Contin. Dyn. Syst. Ser. B 6(1), 129 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Ledzewicz, U., Schättler, H.: On optimal chemotherapy for heterogeneous tumors. J. Biol. Syst. 22(02), 177–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Carrère, C.: Optimization of an in vitro chemotherapy to avoid resistant tumours. J. Theor. Biol. 413, 24–33 (2017). https://doi.org/10.1016/j.jtbi.2016.11.009

    Article  MathSciNet  MATH  Google Scholar 

  23. Lorz, A., Lorenzi, T., Hochberg, M.E., Clairambault, J., Perthame, B.: Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM: Math. Model. Numer. Anal. 47(02), 377–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Greene, J., Lavi, O., Gottesman, M.M., Levy, D.: The impact of cell density and mutations in a model of multidrug resistance in solid tumors. Bull. Math. Biol. 76(3), 627–653 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lorenzi, T., Chisholm, R.H., Desvillettes, L., Hughes, B.D.: Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments. J. Theor. Biol. 386, 166–176 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lorz, A., Lorenzi, T., Clairambault, J., Escargueil, A., Perthame, B.: Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull. Math. Biol. 77(1), 1–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Springer, New York (2012)

    Google Scholar 

  28. Leman, H., Meleard, S., Mirrahimi, S.: Influence of a spatial structure on the long time behavior of a competitive Lotka–Volterra type system. Discrete Contin. Dyn. Syst. Ser. B (2014) https://doi.org/10.1016/j.matpur.2017.10.007

  29. Bonnefon, O., Coville, J., Legendre, G.: Concentration phenomenon in some non-local equation (2015). Preprint arXiv:1510.01971

  30. Cabré, X., Roquejoffre, J.M.: The influence of fractional diffusion in fisher-KPP equations. Commun. Math. Phys. 320(3), 679–722 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Coville, J.: Convergence to equilibrium for positive solutions of some mutation–selection model (2013). Preprint arXiv:1308.6471

  32. Chisholm, R.H., Lorenzi, T., Lorz, A.: Effects of an advection term in nonlocal Lotka–Volterra equations. Commun. Math. Sci. 14(4), 1181–1188 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both authors wish to thank Maxime Chupin, for his thorough knowledge of the modeling language AMPL and the interior-point solver IPOPT, as well as for his valuable help to get us started.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Olivier.

Additional information

Communicated by Günter Leugering.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivier, A., Pouchol, C. Combination of Direct Methods and Homotopy in Numerical Optimal Control: Application to the Optimization of Chemotherapy in Cancer. J Optim Theory Appl 181, 479–503 (2019). https://doi.org/10.1007/s10957-018-01461-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-01461-z

Keywords

Mathematics Subject Classification

Navigation