Skip to main content
Log in

Extremality, Stationarity and Generalized Separation of Collections of Sets

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The core arguments used in various proofs of the extremal principle and its extensions as well as in primal and dual characterizations of approximate stationarity and transversality of collections of sets are exposed, analysed and refined, leading to a unifying theory, encompassing all existing approaches to obtaining ‘extremal’ statements. For that, we examine and clarify quantitative relationships between the parameters involved in the respective definitions and statements. Some new characterizations of extremality properties are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  2. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co. Inc., River Edge, NJ (2002). https://doi.org/10.1142/9789812777096

    Book  MATH  Google Scholar 

  3. Penot, J.P.: Analysis–from Concepts to Applications. Springer, Cham (2016)

    MATH  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996). https://doi.org/10.1137/S0036144593251710

    Article  MathSciNet  MATH  Google Scholar 

  5. Kruger, A.Y., Luke, D.R., Thao, N.H.: Set regularities and feasibility problems. Math. Program. Ser. B 168(1–2), 279–311 (2018). https://doi.org/10.1007/s10107-016-1039-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Transversality and alternating projections for nonconvex sets. Found. Comput. Math. 15(6), 1637–1651 (2015). https://doi.org/10.1007/s10208-015-9279-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Dao, M.N., Noll, D., Phan, H.M.: Proximal point algorithm, Douglas–Rachford algorithm and alternating projections: a case study. J. Convex Anal. 23(1), 237–261 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Kruger, A.Y., Thao, N.H.: Regularity of collections of sets and convergence of inexact alternating projections. J. Convex Anal. 23(3), 823–847 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Noll, D., Rondepierre, A.: On local convergence of the method of alternating projections. Found. Comput. Math. 16(2), 425–455 (2016). https://doi.org/10.1007/s10208-015-9253-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubovitskii, A.Y., Miljutin, A.A.: Extremum problems in the presence of restrictions. USSR Comput. Maths. Math. Phys. 5, 1–80 (1965)

    Article  Google Scholar 

  11. Kruger, A.Y., Mordukhovich, B.S.: New necessary optimality conditions in problems of nondifferentiable programming. In: Numerical Methods of Nonlinear Programming, pp. 116–119. Kharkov (1979) (in Russian). https://asterius.ballarat.edu.au/akruger/research/publications.html

  12. Kruger, A.Y., Mordukhovich, B.S.: Generalized normals and derivatives and necessary conditions for an extremum in problems of nondifferentiable programming. II. VINITI no. 494-80. Minsk (1980) (in Russian). https://asterius.ballarat.edu.au/akruger/research/publications.html

  13. Kruger, A.Y., Mordukhovich, B.S.: Extremal points and the Euler equation in nonsmooth optimization problems. Dokl. Akad. Nauk BSSR 24(8), 684–687 (1980) (in Russian). https://asterius.ballarat.edu.au/akruger/research/publications.html

  14. Kruger, A.Y.: Generalized differentials of nonsmooth functions. VINITI no. 1332-81. Minsk (1981) (in Russian). https://asterius.ballarat.edu.au/akruger/research/publications.html

  15. Kruger, A.Y.: Generalized differentials of nonsmooth functions and necessary conditions for an extremum. Sibirsk. Mat. Zh. 26(3), 78–90 (1985). [in Russian; English transl.: Siberian Math. J. 26 (1985), 370–379]

    MathSciNet  MATH  Google Scholar 

  16. Kruger, A.Y.: \(\varepsilon \)-semidifferentials and \(\varepsilon \)-normal elements. VINITI no. 1331-81. Minsk (1981) (in Russian). https://asterius.ballarat.edu.au/akruger/research/publications.html

  17. Fabian, M.: Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss. Acta Univ. Carolinae 30, 51–56 (1989)

    MathSciNet  MATH  Google Scholar 

  18. Mordukhovich, B.S., Shao, Y.: Extremal characterizations of Asplund spaces. Proc. Am. Math. Soc. 124(1), 197–205 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ioffe, A.D.: Fuzzy principles and characterization of trustworthiness. Set-Valued Anal. 6, 265–276 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Borwein, J.M., Jofré, A.: A nonconvex separation property in Banach spaces. Math. Methods Oper. Res. 48(2), 169–179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory. Fundamental Principles of Mathematical Sciences, vol. 330. Springer, Berlin (2006)

  22. Kruger, A.Y., López, M.A.: Stationarity and regularity of infinite collections of sets. J. Optim. Theory Appl. 154(2), 339–369 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kruger, A.Y.: On Fréchet subdifferentials. J. Math. Sci. 116(3), 3325–3358 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kruger, A.Y.: Weak stationarity: eliminating the gap between necessary and sufficient conditions. Optimization 53(2), 147–164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kruger, A.Y.: About stationarity and regularity in variational analysis. Taiwan. J. Math. 13(6A), 1737–1785 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kruger, A.Y., Luke, D.R., Thao, N.H.: About subtransversality of collections of sets. Set-Valued Var. Anal. 25(4), 701–729 (2017). https://doi.org/10.1007/s11228-017-0436-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Zheng, X.Y., Ng, K.F.: Perturbation analysis of error bounds for systems of conic linear inequalities in Banach spaces. SIAM J. Optim. 15(4), 1026–1041 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zheng, X.Y., Ng, K.F.: The Lagrange multiplier rule for multifunctions in Banach spaces. SIAM J. Optim. 17(4), 1154–1175 (2006). https://doi.org/10.1137/060651860

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, G., Ng, K.F., Zheng, X.Y.: Unified approach to some geometric results in variational analysis. J. Funct. Anal. 248(2), 317–343 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, G., Tang, C., Yu, G., Wei, Z.: On a separation principle for nonconvex sets. Set-Valued Anal. 16, 851–860 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zheng, X.Y., Ng, K.F.: A unified separation theorem for closed sets in a Banach space and optimality conditions for vector optimization. SIAM J. Optim. 21(3), 886–911 (2011). https://doi.org/10.1137/100811155

    Article  MathSciNet  MATH  Google Scholar 

  32. Bui, H.T., Kruger, A.Y.: About extensions of the extremal principle. Vietnam J. Math. 46(2), 215–242 (2018). https://doi.org/10.1007/s10013-018-0278-y

    Article  MathSciNet  MATH  Google Scholar 

  33. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  34. Penot, J.P.: Calculus Without Derivatives. Graduate Texts in Mathematics, vol. 266. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4538-8

    Book  MATH  Google Scholar 

  35. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2014)

    MATH  Google Scholar 

  36. Ioffe, A.D.: Variational Analysis of Regular Mappings. Theory and Applications. Springer Monographs in Mathematics. Springer, New York (2017)

    Book  MATH  Google Scholar 

  37. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  38. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  39. Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems, Studies in Mathematics and Its Applications, vol. 6. North-Holland Publishing Co., Amsterdam (1979)

    Google Scholar 

  40. Rockafellar, R.T.: Directionally Lipschitzian functions and subdifferential calculus. Proc. Lond. Math. Soc. (3) 39(2), 331–355 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  41. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  42. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)

    MATH  Google Scholar 

  43. Kruger, A.Y.: About extremality of systems of sets. Dokl. Nats. Akad. Nauk Belarusi, 42(1), 24–28 (1998) (in Russian). https://asterius.ballarat.edu.au/akruger/research/publications.html

  44. Kruger, A.Y.: About regularity of collections of sets. Set-Valued Anal. 14(2), 187–206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kruger, A.Y.: Stationarity and regularity of set systems. Pac. J. Optim. 1(1), 101–126 (2005)

    MathSciNet  MATH  Google Scholar 

  46. Kruger, A.Y.: Strict \((\varepsilon ,\delta )\)-semidifferentials and extremality of sets and functions. Dokl. Nats. Akad. Nauk Belarusi 44(2), 19–22 (2000). (in Russian). https://asterius.ballarat.edu.au/akruger/research/publications.html

  47. Kruger, A.Y.: Strict \((\varepsilon,\delta )\)-subdifferentials and extremality conditions. Optimization 51(3), 539–554 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kruger, A.Y., Thao, N.H.: About uniform regularity of collections of sets. Serdica Math. J. 39, 287–312 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Kruger, A.Y., Thao, N.H.: Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164(1), 41–67 (2015). https://doi.org/10.1007/s10957-014-0556-0

    Article  MathSciNet  MATH  Google Scholar 

  50. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9(4), 485–513 (2009). https://doi.org/10.1007/s10208-008-9036-y

    Article  MathSciNet  MATH  Google Scholar 

  51. Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Valued Var. Anal. 21(3), 431–473 (2013). https://doi.org/10.1007/s11228-013-0239-2

    Article  MathSciNet  MATH  Google Scholar 

  52. Hesse, R., Luke, D.R.: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems. SIAM J. Optim. 23(4), 2397–2419 (2013). https://doi.org/10.1137/120902653

    Article  MathSciNet  MATH  Google Scholar 

  53. Bui, H.T., Lindstrom, S.B., Roshchina, V.: Variational analysis down under 2018 open problem session. J. Optim. Theory Appl. (2018). https://doi.org/10.1007/s10957-018-1399-x. (This issue)

Download references

Acknowledgements

The research was supported by the Australian Research Council, project DP160100854. Hoa T. Bui is supported by an Australian Government Research Training Program (RTP) Stipend and RTP Fee-Offset Scholarship through Federation University Australia. Alexander Y. Kruger benefited from the support of the FMJH Program PGMO and from the support of EDF. We wish to thank PhD student Nguyen Duy Cuong from Federation University Australia for careful reading of the manuscript and helping us eliminate numerous typos, and the anonymous referees for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Kruger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, H.T., Kruger, A.Y. Extremality, Stationarity and Generalized Separation of Collections of Sets. J Optim Theory Appl 182, 211–264 (2019). https://doi.org/10.1007/s10957-018-01458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-01458-8

Keywords

Mathematics Subject Classification

Navigation