Homo Sapiens, Homo Ludens



Smooth Banach Space Experimental Mathematic Australian Mathematical Society Sparse Optimization Canadian Mathematical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wishes to thank Jerry Beer and David H. Bailey for their assistance in the preparation of this article.


  1. 1.
    Borwein, J.M., Borwein, P.B., Bailey, D.H.: Ramanujan, modular equations, and approximations to pi, or how to compute one billion digits of pi. Am. Mathe. Mon. 96(3), 201–219 (1989)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berlinksi, D.: “Review of The Pleasures of Counting by T.W. Korner,” The Sciences, pp. 37–41 (1997)Google Scholar
  3. 3.
    Borwein, J.M., Borwein, P.B.: Ramanujan and Pi. Sci. Am. 258(2), 112–117 (1988)CrossRefMATHGoogle Scholar
  4. 4.
    Bailey, D.H., Borwein, P.B., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66(218), 903–913 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Borwein, J.M., Preiss, D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. Am. Math. Soc. 303(2), 517–527 (1987)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Université de Limoges, Laboratoire XLIM UMR-CNRS 6172LimogesFrance
  2. 2.Federation University Australia, Mount Helen CampusBallaratAustralia

Personalised recommendations