Skip to main content
Log in

Set-Valued Systems with Infinite-Dimensional Image and Applications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In infinite-dimensional spaces, we investigate a set-valued system from the image perspective. By exploiting the quasi-interior and the quasi-relative interior, we give some new equivalent characterizations of (proper, regular) linear separation and establish some new sufficient and necessary conditions for the impossibility of the system under new assumptions, which do not require the set to have nonempty interior. We also present under mild assumptions the equivalence between (proper, regular) linear separation and saddle points of Lagrangian functions for the system. These results are applied to obtain some new saddle point sufficient and necessary optimality conditions of vector optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giannessi, F.: Constrained Optimization and Image Space Analysis. Springer, New York (2005)

    MATH  Google Scholar 

  2. Giannessi, F., Rapcsák, T.: Images, separation of sets and extremum problems. In: Recent Trends in Optimization Theory and Applications. World Scientific Series in Applicable Analysis vol. 5, pp. 79–106 (1995)

    Chapter  Google Scholar 

  3. Li, J., Mastroeni, G.: Image convexity of generalized systems with infinite dimensional image and applications. J. Optim. Theory Appl. 169, 91–115 (2016)

    Article  MathSciNet  Google Scholar 

  4. Mastroeni, G., Rapcsák, T.: On convex generalized systems. J. Optim. Theory Appl. 104, 605–627 (2000)

    Article  MathSciNet  Google Scholar 

  5. Castellani, M., Mastroeni, G., Pappalardo, M.: On regularity for generalized systems and applications. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Applications, pp. 13–26. Plenum Publishing Corporation, New York (1996)

    Chapter  Google Scholar 

  6. Guu, S.M., Li, J.: Vector quasi-equilibrium problems: separation, saddle points and error bounds for the solution set. J. Global Optim. 58, 751–767 (2014)

    Article  MathSciNet  Google Scholar 

  7. Li, J., Feng, S.Q., Zhang, Z.: A unified approach for constrained extremum problems: image space analysis. J. Optim. Theory Appl. 159, 69–92 (2013)

    Article  MathSciNet  Google Scholar 

  8. Li, J., Huang, N.J.: Image space analysis for variational inequalities with cone constraints and applications to traffic equilibria. Sci. China Math. 55, 851–868 (2012)

    Article  MathSciNet  Google Scholar 

  9. Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems. Part I: image space analysis. J. Optim. Theory Appl. 161, 738–762 (2014)

    Article  MathSciNet  Google Scholar 

  10. Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems. Part II: special duality schemes. J. Optim. Theory Appl. 161, 763–782 (2014)

    Article  MathSciNet  Google Scholar 

  11. Carathéodory, M.: Calculus of Variations and Partial Differential Equations of the First Order. Chelsea Publ. Co., New York (1982). Translation of the volume “Variationsrechnung und Partielle Differential Gleichungen Erster Ordnung”. B.G. Teubner, Berlin (1935)

  12. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  13. Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42, 331–365 (1984)

    Article  MathSciNet  Google Scholar 

  14. Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Survey of Mathematical Programming (Proceedings of the Ninth International Mathematical Programming Symposium. Budapest, 1976), vol. 2, pp. 423–439. North-Holland, Amsterdam (1979)

  15. Hestenes, M.R.: Optimization Theory: The Finite Dimensional Case. Wiley, New York (1975)

    MATH  Google Scholar 

  16. Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: quasi-relative interiors and duality theory. Math. Program. Ser. B. 57, 15–48 (1992)

    Article  Google Scholar 

  17. Daniele, P., Giuffrè, S., Idone, G., Maugeri, A.: Infinite dimensional duality and applications. Math. Ann. 339, 221–239 (2007)

    Article  MathSciNet  Google Scholar 

  18. Maugeri, A., Raciti, F.: Remarks on infinite dimensional duality. J. Global Optim. 46, 581–588 (2010)

    Article  MathSciNet  Google Scholar 

  19. Limber, M.A., Goodrich, R.K.: Quasi onteriors, Lagrange multipliers, and \(L^p\) spectral estimation with lattice bounds. J. Optim. Theory Appl. 78, 143–161 (1993)

    Article  MathSciNet  Google Scholar 

  20. Boţ, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19, 217–233 (2008)

    Article  MathSciNet  Google Scholar 

  21. Boţ, R.I., Csetnek, E.R., Moldovan, A.: Revisiting some duality theorems via the quasirelative interior in convex optimization. J. Optim. Theory Appl. 139, 67–84 (2008)

    Article  MathSciNet  Google Scholar 

  22. Cammaroto, F., Di Bella, B.: Separation theorem based on the quasirelative interior and application to duality theory. J. Optim. Theory Appl. 125, 223–229 (2005)

    Article  MathSciNet  Google Scholar 

  23. Flores-Bazán, F., Mastroeni, G.: Strong duality in cone constrained nonconvex optimization. SIAM J. Optim. 23, 153–169 (2013)

    Article  MathSciNet  Google Scholar 

  24. Tasset, T. N.: Lagrange multipliers for set-valued functions when ordering cones have empty interior. Thesis (Ph.D.), University of Colorado at Boulder. ProQuest LLC, Ann Arbor, MI (2010)

  25. Zălinescu, C.: On the use of the quasi-relative interior in optimization. Optimzation 64, 1795–1823 (2015)

    Article  MathSciNet  Google Scholar 

  26. Borwein, J.M., Goebel, R.: Notions of relative interior in Banach spaces. J. Math. Sci. (N. Y.) 115, 2542–2553 (2003)

    Article  MathSciNet  Google Scholar 

  27. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  Google Scholar 

  28. Jahn, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin (2011)

    MATH  Google Scholar 

  29. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)

    Book  Google Scholar 

  30. Giannessi, F.: Theorems of the alternative for multifunctions with applications to optimization: general results. J. Optim. Theory Appl. 55, 233–256 (1987)

    Article  MathSciNet  Google Scholar 

  31. Borwein, J.M.: A multivalued approach to the Farkas lemma. Point-to-set maps and mathematical programming. Math. Programm. Stud. 10, 42–47 (1979)

    Article  Google Scholar 

  32. Borwein, J.M.: Multivalued convexity and optimization: a unified approach to inequality and equality constraints. Math. Programm. 13, 183–199 (1977)

    Article  MathSciNet  Google Scholar 

  33. Khan, A.A., Tammer, C., Zălinescu, C.: Set-Valued Optimization. An introduction with Applications. Vector Optimization. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  34. Zhou, Z.A., Yang, X.M.: Optimality conditions of generalized subconvex like set-valued optimization problems based on the quasi-relative interior. J. Optim. Theory Appl. 150, 327–340 (2011)

    Article  MathSciNet  Google Scholar 

  35. Guu, S.M., Huang, N.J., Li, J.: Scalarization approaches for set-valued vector optimization problems and vector variational inequalities. J. Math. Anal. Appl. 356, 564–576 (2009)

    Article  MathSciNet  Google Scholar 

  36. Schaefer, H.H.: Topological Vector Spaces. Springer, New York (1980)

    MATH  Google Scholar 

  37. Breckner, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4, 109–127 (1997)

    MathSciNet  MATH  Google Scholar 

  38. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  39. Flores-Bazán, F., Flores-Bazán, F., Vera, C.: A complete characterization of strong duality in nonconvex optimization with a single constraint. J. Global Optim. 53, 185–201 (2012)

    Article  MathSciNet  Google Scholar 

  40. Giannessi, F., Mastroeni, G.: Separation of sets and Wolfe duality. J. Global Optim. 42, 401–412 (2008)

    Article  MathSciNet  Google Scholar 

  41. Holmes, R.B.: Geometric Functional Analysis and Its Applications. Springer, New York (1975)

    Book  Google Scholar 

  42. Jabri, Y.: The Mountain Pass Theorem. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  43. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  44. Giannessi, F., Mastroeni, G., Yao, J.C.: On maximum and variational principles via image space analysis. Positivity 16, 405–427 (2012)

    Article  MathSciNet  Google Scholar 

  45. Courant, R.: Dirichlet Principle, Conformal Mappings and Minimal Surfaces. Interscience, New York (1950)

    MATH  Google Scholar 

  46. Shi, S.Z.: Convex Analysis. Shanghai Science and Technology Press, Shanghai (1990)

    Google Scholar 

  47. You, Z.Y., Gong, H.Y., Xu, Z.B.: Nonlinear Analysis. Xi’an Jiaotong University Press, Xi’an (1991)

    Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate three anonymous referees for their useful comments and suggestions, which have helped to improve an early version of the paper. The authors also greatly appreciate Dr. G. Mastroeni for his valuable suggestions on the last part of Sect. 5. The research was supported by the National Natural Science Foundation of China, Project 11371015; the Key Project of Chinese Ministry of Education, Project 211163; and Sichuan Youth Science and Technology Foundation, Project 2012JQ0032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, L. Set-Valued Systems with Infinite-Dimensional Image and Applications. J Optim Theory Appl 179, 868–895 (2018). https://doi.org/10.1007/s10957-016-1041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-1041-8

Keywords

Mathematics Subject Classification

Navigation