Journal of Optimization Theory and Applications

, Volume 171, Issue 3, pp 998–1007 | Cite as

Copositivity and Sparsity Relations Using Spectral Properties

  • Abdeljelil Baccari
  • Mourad Naffouti


A standard quadratic optimization problem consists in minimizing a quadratic form over the standard simplex. This problem has a closer connection with copositive optimization, where the copositivity appears in local optimality conditions. In this paper, we establish a relationship between the sparsity of a solution of the standard quadratic optimization problem, from one hand, and the copositivity of the Hessian matrix of the Lagrangian from other hand. More precisely, if the Hessian matrix is copositive we prove that the number of zero components, of a local minimizer associated with a standard quadratic optimization problem, is greater or equal to the number of negative eigenvalues counting multiplicities. Moreover, we show that if the number of zero components of a local minimizer is equal to the number of negative eigenvalues of the Hessian matrix, then the strict complementarity condition is satisfied and the critical cone is a linear subspace.


Standard quadratic optimization problem Copositive matrices Local minimum Eigenvalues 

Mathematics Subject Classification

90C30 90C20 49K10 15A18 


  1. 1.
    Motzkin, T.S.: Copositive quadratic forms. Natl. Bureau Stand. Rep. 1818, 11–22 (1952)Google Scholar
  2. 2.
    Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120(2), 479–495 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Jacobson, D.H.: Extensions of Linear-Quadratic Control, Optimization and Matrix Theory. Academic, London (1977)MATHGoogle Scholar
  4. 4.
    Jones, P.C.: A note on the Talman, Van der Heyden linear complementarity algorithm. Math. Program. 25, 122–124 (1983)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Johnson, C.R., Reams, R.: Spectral theory of copositive matrices. Linear Algebra Appl. 395, 275–281 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kaplan, W.: A test for copositive matrices. Linear Algebra Appl. 313(1–3), 203–206 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Jargalsaikhan, B.: Indefinite copositive matrices with exactly one positive eigenvalue or exactly one negative eigenvalue. Electron. J. Linear Algebra. 26, 754–761 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Li, P., Feng, Y.Y.: Criteria for copositive matrices of order four. Linear Algebra Appl. 194, 109–124 (1993)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bundfuss, S., Dür, M.: Algorithmic copositivity detection by simplicial partition. Linear Algebra Appl. 428, 1511–1523 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dür, M.: Copositive programming—a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Berlin (2010)CrossRefGoogle Scholar
  11. 11.
    Bomze, I.M., Eichfelder, G.: Copositivity detection by difference-of-convex decomposition and \(\omega \)-subdivision. Math. Program. 138(1–2), 365–400 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Väliaho, H.: Quadratic-programming criteria for copositive matrices. Linear Algebra Appl. 119, 163–182 (1989)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Väliaho, H.: Criteria for copositive matrices. Linear Algebra Appl. 81, 19–34 (1986)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Bomze, I.M.: Copositive optimization-recent developments and applications. Eur. J. Oper. Res. 216(3), 509–520 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Bomze, I.M., Schachinger, W., Uchida, G.: Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization. J. Global Optim. 52(3), 423–445 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hiriart-Urruty, J.B., Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52(4), 593–629 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Micchelli, C.A., Pinkus, A.: Some remarks on nonnegative polynomials on polyhedra. In: Anderson, T.W., Athreya, K.B., Iglehart, D.L. (eds.) Probability, Statistics, and Mathematics Papers in Honor of Samuel Karlin, pp. 163–186. Academic, Boston (1989)CrossRefGoogle Scholar
  18. 18.
    Borwein, J.M.: Necessary and sufficient conditions for quadratic minimality. Numer. Funct. Anal. Optim. 5(2), 127–140 (1982)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hoffman, A.J., Pereira, F.: On copositive matrices with \(-1\), 0, 1 entries. J. Comb. Theory Ser. A. 14(3), 302–309 (1973)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Chabrillac, Y., Crouzeix, J.P.: Definiteness and semidefiniteness of quadratic forms revisited. Linear Algebra Appl. 63, 283–292 (1984)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Han, S.P., Fujiwara, O.: An inertia theorem for symmetric matrices and its applications to nonlinear programming. Linear Algebra Appl. 72, 47–58 (1985)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Jongen, H.T., Möbert, T., Rückmann, J., Tammer, K.: On inertia and Schur complement in optimization. Linear Algebra Appl. 95, 97–109 (1987)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of Tunis, ENSITTunisTunisia
  2. 2.University of Tunis El Manar, FSTEl Manar, TunisTunisia

Personalised recommendations