Advertisement

Journal of Optimization Theory and Applications

, Volume 171, Issue 1, pp 228–250 | Cite as

Error Bounds Via Exact Penalization with Applications to Concave and Quadratic Systems

  • Hoai An Le Thi
  • Huynh Van Ngai
  • Tao Pham Dinh
Article

Abstract

In this paper, we deal with the error bounds for inequality systems and the exact penalization for constrained optimization problems. We firstly investigate the relationships between the error bound and the exact penalization. Then we establish the new error bounds for inequality systems of concave functions and of nonconvex quadratic functions over polyhedral convex sets.

Keywords

Subdifferential Exact penalty Error bound Concave Quadratic 

Mathematics Subject Classification

49J52 90C26 90C30 90C31 

Notes

Acknowledgments

We would like to thank the referees for their helpful comments and suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand. 49, 263–265 (1952)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Azé, D., Corvellec, J.-N.: Characterization of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10, 409–425 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Fabian, M., Henrion, R., Kruger, A.Y., Outrata, J.V.: Error bounds: necessary and sufficient conditions. Set-Valued Var. Anal. 18, 121–149 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Optim. 4, 383–392 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Luo, Z.Q., Pang, J.S.: Error bounds for the analytic systems and their applications. Math. Program. 67, 1–28 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ngai, H., Théra, M.: Errors bounds and implicit multifunction theorem in smooth Banach spaces and applications to optimization. Set-Valued Anal. 12, 195–223 (2004)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ngai, H., Théra, M.: Error bounds for convex differentiable inequality systems in Banach spaces. Math. Program. 104(2), 465–482 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Wu, Z., Ye, J.: On errors bounds for lower semicontinuous functions. Math. Program. 92, 301–314 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Wu, Z., Ye, J.: First-order and second-order conditions for error bounds. SIAM J. Optim. 14(3), 621–645 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Azé, D.: A survey on error bounds for lower semicontinuous functions. In: ESAIM: Proceding 13, pp. 1–17 (2003)Google Scholar
  11. 11.
    Lewis, A.S., Pang, J.S.: Error bound for convex inequality systems. In: Crouzeix, J.P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 75–110. Kluwer Academic Publisher, Dordrecht (1997)Google Scholar
  12. 12.
    Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)MathSciNetMATHGoogle Scholar
  13. 13.
    Auslender, A., Crouzeix, J.P.: Global regularily theorems. Math. Oper. Res. 13, 243–253 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Li, W.: Abadie’s constraint qualification, metric regularity, and error bound for differentiable convex inequalities. SIAM J. Optim. 7(4), 966–978 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)CrossRefMATHGoogle Scholar
  16. 16.
    Wang, T., Pang, J.S.: Global error bound for convex quadratic inequality systems. Optimization 31, 1–12 (1994)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jourani, A.: Hoffman’s error bound, local controlability and sensivity analysis. SIAM J. Control Optim. 38, 947–970 (2000)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ng, K.F., Zheng, X.Y.: Error bound for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12, 1–17 (2001)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ngai, H.V., Théra, M.: Error bounds for systems of lower semicontinuous functions in Asplund spaces. Math. Program. 116, 397–427 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Luo, Z.Q., Pang, J.S., Ralph, D., Wu, S.-Q.: Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints. Math. Program. 75, 19–76 (1996)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Luo, Z.Q., Sturm, J.F.: Error bounds for quadratic systems. In: Frenk, H., et al. (eds.) High Performance Optimization, pp. 383–404. Kluwer Academic Publisher, Dordrecht (2000)CrossRefGoogle Scholar
  22. 22.
    Huang, L.R., Ng, K.F.: On first and second-order conditions for error bounds. SIAM J. Optim. 14, 1057–1073 (2004)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Bonnans, J.F., Ioffe, A.: Second-order sufficiency and quadratic growth for non isolated minima. Math. Oper. Res. 20, 801–817 (1995)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)MATHGoogle Scholar
  25. 25.
    Ioffe, A.: Calculus of Dini subdifferentials of functions and contingent coderitaves of set-valued maps. Nonlinear Anal. 8, 517–539 (1984)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rockafellar, R.T., Wets, J.-B.: Variational Analysis. Springer, Heidelberg (1998)CrossRefMATHGoogle Scholar
  27. 27.
    Le Thi, H.A., Pham Dinh, T., Ngai, H.V.: Exact penalty techniques in DC programming. J. Glob. Optim. 52(3), 509–535 (2012)CrossRefMATHGoogle Scholar
  28. 28.
    Pang, J.S., Cottle, R.W., Stone, R.E.: The Linear Complementary Problem. Kluwer Academic, Boston (1992)MATHGoogle Scholar
  29. 29.
    Moré, J.J.: Generalizations of the trust region problem. Optim. Methods Softw. 2, 189–209 (1993)CrossRefGoogle Scholar
  30. 30.
    Ioffe, A.: Regular points of Lipschitz functions. Trans. Am. Soc. 251, 61–69 (1979)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hoai An Le Thi
    • 1
  • Huynh Van Ngai
    • 2
  • Tao Pham Dinh
    • 3
  1. 1.Laboratoiry of Theoretical and Applied Computer ScienceUniversité de LorraineMetzFrance
  2. 2.Department of MathematicsUniversity of QuynhonQui NhonVietnam
  3. 3.Laboratory of MathematicsINSA-Rouen, University of NormandieSaint-Étienne-du-Rouvray CedexFrance

Personalised recommendations