Fuzzy Portfolio Selection Including Cardinality Constraints and Integer Conditions

  • Clara Calvo
  • Carlos Ivorra
  • Vicente Liern


This paper is concerned with a fuzzy version of the portfolio selection problem, which includes diversification conditions and incorporates investor’s subjective preferences. The inclusion of diversification conditions leads to mixed-integer models, which are computationally demanding. On the other hand, the consideration of integer conditions makes the solution very sensitive to investor’s subjective preferences with regard to the trade-off between risk and expected return. These preferences are imprecise by their very nature. In this paper, we overcome these issues by proposing a solution method for a fuzzy quadratic portfolio selection model with integer conditions. The suitability of the proposed method is illustrated by means of two numerical examples.


Fuzzy optimization Portfolio selection Efficient frontier Nonlinear integer programming 

Mathematics Subject Classification

90C29 90C70 


  1. 1.
    Markowitz, H.M.: Portfolio selection. J. Financ. 7, 77–91 (1952)Google Scholar
  2. 2.
    Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments. Wiley, New York (1959)Google Scholar
  3. 3.
    Inuiguchi, M., Ramík, J.: Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst. 111, 3–28 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Tanaka, H., Guo, P., Türksen, I.B.: Portfolio selection based on fuzzy probabilities and possibility distributions. Fuzzy Sets Syst. 3, 387–397 (2000)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Watada, J.: Fuzzy portfolio selection and its applications to decision making. Tatra Mt. Math. Publ. 13, 219–248 (1997)MathSciNetMATHGoogle Scholar
  6. 6.
    Gupta, P., Inuiguchi, M., Mehlawat, M.K., Mittal, G.: Multi-objective credibilistic portfolio selection model with fuzzy chance-constraints. Inform. Sci. 229, 1–17 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cadenas, J.M., Carrillo, J.V., Garrido, M.C., Ivorra, C., Liern, V.: Exact and heuristic procedures for solving the fuzzy portfolio selection problem. Fuzzy Opt. Decis. Mak. 11, 29–46 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jana, P., Roy, T.K., Mazumder, S.K.: Multi-objective possibilistic model for portfolio selection with transaction cost. J. Comput. Appl. Math. 228, 188–196 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jiménez, M., Bilbao, A.: Pareto-optimal solutions in fuzzy multi-objective linear programming. Fuzzy Sets Syst. 160, 2714–2721 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Calvo, C., Ivorra, C., Liern, V.: The geometry of the efficient Frontier of the portfolio selection problem. J. Financ. Decis. Mak. 7, 27–36 (2011)MATHGoogle Scholar
  11. 11.
    Calvo, C., Ivorra, C., Liern, V.: On the computation of the efficient frontier of the portfolio selection problem. J. Appl. Math. (2012). doi: 10.1155/2012/105616
  12. 12.
    Fama, E.F.: Foundations of Finance. Basic Books, New York (1976)Google Scholar
  13. 13.
    Huang, C.-F., Litzenberg, R.H.: Foundations for Financial Economics. North Holland, Amsterdam (1988)Google Scholar
  14. 14.
    León, T., Liern, V., Vercher, E.: Viability of infeasible portfolio selection problems: a fuzzy approach. Eur. J. Oper. Res. 139, 178–189 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    León, T., Liern, V., Vercher, E.: Fuzzy mathematical programming for portfolio management. In: Bonilla, M., Casasús, T., Sala, R. (eds.) Financial Modelling. Physica-Verlag, Heidelberg (2000)Google Scholar
  16. 16.
    Zimmermann, H.J.: Fuzzy mathematical programming. In: Gal, T., Greenberg, H.J. (eds.) Advances in Sensitivity Analysis and Parametric Programming. Kluwer, Dordrecht (1997)Google Scholar
  17. 17.
    Delgado, M., Verdegay, J.L., Vila, M.A.: Fuzzy linear programming: from classical methods to new applications. In: Delgado, M., Kacprzyk, J., Verdegay, J.L., Vila, M.A. (eds.) Fuzzy Optimization: Recent Advances. Physica Verlag, Heidelberg (1988)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Universitat de València ValenciaSpain

Personalised recommendations