Advertisement

Journal of Optimization Theory and Applications

, Volume 171, Issue 2, pp 365–383 | Cite as

Quaisidifferentials in Kantorovich Spaces

  • Elena K. Basaeva
  • Anatoly G. Kusraev
  • Semen S. Kutateladze
Article

Abstract

This is an overview of the quasidifferential calculus for the mappings that arrive at Kantorovich spaces. The necessary optimality conditions are derived also for multiple criteria optimization problems with quasidifferentiable data.

Keywords

Kantorovich space Sublinear operator Quasidifferential Nonsmooth extremal problem 

Mathematics Subject Classification

49J52 46B48 49J27 

Notes

Acknowledgments

The authors are grateful to Alexander Ioffe for his deep and inspiring remarks that helped to improve presentation.

References

  1. 1.
    Demyanov, V.F., Rubinov, A.M.: On quasidifferentiable functionals. Sov. Math. Dokl. 250, 21–25 (1980)MathSciNetMATHGoogle Scholar
  2. 2.
    Demyanov, V.F., Dixon, L.C.W.: Quasidifferential Calculus. North-Holland, Amsterdam (1986)CrossRefMATHGoogle Scholar
  3. 3.
    Demyanov, V.F., Rubinov, A.M.: Quasidifferential Calculus. Optimization Software, New York (1986)CrossRefMATHGoogle Scholar
  4. 4.
    Demyanov, V.F., Rubinov, A.M.: Fundamentals of Nonsmooth Analysis and Quasidifferential Calculus. Nauka, Moscow (1990)Google Scholar
  5. 5.
    Demyanov, V.F., Stavroulaskis, G.E., Polyakova, L.N., Panagiotopoulos, P.D.: Quasidifferentiability and Nonsmooth Modelling in Mechanics. Engineering and Economics. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  6. 6.
    Demyanov, V.F., Rubinov, A.M.: Quasidifferentiability and Related Topics. Kluwer, Dordrecht (2000)CrossRefMATHGoogle Scholar
  7. 7.
    Kusraev, A.G., Kutateladze, S.S.: Subdifferential Calculus: Theory and Applications. Nauka, Moscow (2007)MATHGoogle Scholar
  8. 8.
    Vulikh, B.Z.: Introduction to the Theory of Semi-Ordered Spaces. Fizmatgiz, Moscow (1961)MATHGoogle Scholar
  9. 9.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Nauka, Moscow (1984)MATHGoogle Scholar
  10. 10.
    Kantorovich, L.V., Vulikh, B.Z., Pinsker, A.G.: Functional Analysis in Semi-Ordered Spaces. Gostekhizdat, Moscow and Leningrad (1950)MATHGoogle Scholar
  11. 11.
    Kusraev, A.G.: Dominated Operators. Kluwer, Dordrecht (2000)CrossRefMATHGoogle Scholar
  12. 12.
    Kantorovich, L.V.: To the general theory of operations in semi-ordered spaces. Sov. Math. Dokl. 1, 271–274 (1936)Google Scholar
  13. 13.
    Levin, V.L.: Convex Analysis in Measurable Function Spaces and Its Applications in Mathematics and Economics. Nauka, Moscow (1985)Google Scholar
  14. 14.
    Kusraev, A.G., Kutateladze, S.S.: Boolean Valued Analysis. Kluwer, Dordrecht (1999)CrossRefMATHGoogle Scholar
  15. 15.
    Kusraev, A.G., Kutateladze, S.S.: Boolean Valued Analysis: Selected Topics. Southern Mathematical Institute, Vladikavkaz (2014)MATHGoogle Scholar
  16. 16.
    Riesz, F.: Sur la décomposition des opérations fonctionnelles. In: Atti Congresso Intern. Bologna, 1928, vol. 3, pp. 143–148 (1930)Google Scholar
  17. 17.
    Demyanov, V.F., Rubinov, A.M.: On quasidifferentiable mappings. Math. Operationsforsch. Stat. Ser. Optim. 14, 3–21 (1983)MathSciNetMATHGoogle Scholar
  18. 18.
    Demyanov, V.F., Polyakova, L.N., Rubinov, A.M.: On one generalization of the concept of subdifferential. In: Abstracts. All-Union Conference on Dynamical Control. Sverdlovsk, pp. 79–84 (1979)Google Scholar
  19. 19.
    Basaeva, E.K.: Quasidifferentials in \(K\)-spaces. Vladikavkaz Math. J. 5, 14–30 (2003)MathSciNetMATHGoogle Scholar
  20. 20.
    Basaeva, E.K., Kusraev, A.G.: On the quasidifferential of composition. Vladikavkaz Math. J. 5, 10–25 (2003)MathSciNetMATHGoogle Scholar
  21. 21.
    Demyanov, V.F., Vasiliev, L.V.: Nondifferentiable Optimization. Nauka, Moscow (1981)Google Scholar
  22. 22.
    Gorokhovik, V.V.: On the quasidifferentiability of real-valued functions. Sov. Math. Dokl. 266, 1294–1298 (1982)MathSciNetMATHGoogle Scholar
  23. 23.
    Gorokhovik, V.V.: On the quasidifferentiability of real functions and the conditions of local extrema. Sib. Math. J. 25, 62–70 (1984)MathSciNetGoogle Scholar
  24. 24.
    Basaeva, E.K.: Necessary optimality conditions in quasidifferentiable vector programs. Vladikavkaz Math. J. 6, 3–25 (2004)MathSciNetMATHGoogle Scholar
  25. 25.
    Kusraev, A.G.: Vector Duality and its Applications. Nauka, Novosibirsk (1985)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Elena K. Basaeva
    • 1
  • Anatoly G. Kusraev
    • 1
  • Semen S. Kutateladze
    • 2
  1. 1.Southern Mathematical InstituteVladikavkaz Scientific Center of the RASVladikavkazRussia
  2. 2.Sobolev Institute of MathematicsSiberian Division of the RASNovosibirskRussia

Personalised recommendations