On the Relation Between Optimal Transport and Schrödinger Bridges: A Stochastic Control Viewpoint

  • Yongxin Chen
  • Tryphon T. Georgiou
  • Michele Pavon


We take a new look at the relation between the optimal transport problem and the Schrödinger bridge problem from a stochastic control perspective. Our aim is to highlight new connections between the two that are richer and deeper than those previously described in the literature. We begin with an elementary derivation of the Benamou–Brenier fluid dynamic version of the optimal transport problem and provide, in parallel, a new fluid dynamic version of the Schrödinger bridge problem. We observe that the latter establishes an important connection with optimal transport without zero-noise limits and solves a question posed by Eric Carlen in 2006. Indeed, the two variational problems differ by a Fisher information functional. We motivate and consider a generalization of optimal mass transport in the form of a (fluid dynamic) problem of optimal transport with prior. This can be seen as the zero-noise limit of Schrödinger bridges when the prior is any Markovian evolution. We finally specialize to the Gaussian case and derive an explicit computational theory based on matrix Riccati differential equations. A numerical example involving Brownian particles is also provided.


Optimal transport Schrödinger bridge Stochastic control 

Mathematics Subject Classification

60J60 49L20 49J20 35Q35 28A50 



Research partially supported by the NSF under Grant ECCS-1509387, the AFOSR under Grants FA9550-12-1-0319, and FA9550-15-1-0045 and by the University of Padova Research Project CPDA 140897. Part of the research of M.P. was conducted during a stay at the Courant Institute of Mathematical Sciences of the New York University whose hospitality is gratefully acknowledged.


  1. 1.
    Monge, G.: Mémoire sur la théorie des déblais et des remblais, De l’Imprimerie Royale (1781)Google Scholar
  2. 2.
    Schrödinger, E.: Über die Umkehrung der Naturgesetze, Sitzungsberichte der Preuss. Phys. Math. Klasse. 10, 144–153 (1931)Google Scholar
  3. 3.
    Schrödinger, E.: Sur la théorie relativiste de l’electron et l’interpretation de la mécanique quantique. Ann. Inst. H. Poincaré. 2, 269 (1932)MATHGoogle Scholar
  4. 4.
    Kantorovich, L.: On the transfer of masses. Dokl. Akad. Nauk. 37, 227–229 (1942)Google Scholar
  5. 5.
    Rachev, S., Rüschendorf, L.: Mass Transportation Problems: Theory, vol. 1. Springer, New York (1998)MATHGoogle Scholar
  6. 6.
    Villani, C.: Topics in Optimal Transportation, vol. 58. AMS, Providence (2003)MATHGoogle Scholar
  7. 7.
    Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, New York (2008)MATHGoogle Scholar
  8. 8.
    Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 1–17 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Benamou, J., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numerische Mathematik 84(3), 375–393 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag, Basel (2008)MATHGoogle Scholar
  12. 12.
    Ning, L., Georgiou, T.T., Tannenbaum, A.: Matrix-valued Monge–Kantorovich optimal mass transport. IEEE Trans. Autom. Control 60(2), 373–382 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fortet, R.: Résolution d’un système d’equations de M. Schrödinger. J. Math. Pure Appl. 9, 83–105 (1940)MathSciNetMATHGoogle Scholar
  14. 14.
    Beurling, A.: An automorphism of product measures. Ann. Math. 72, 189–200 (1960)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Jamison, B.: The Markov processes of Schrödinger. Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 323–331 (1975)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.L. (ed.) Ècole d’Ètè de Probabilitès de Saint-Flour XV–XVII, vol. 1362, pp. 102–203. Springer, New York (1988)Google Scholar
  17. 17.
    Wakolbinger, A.: Schrödinger bridges from 1931 to 1991. Contribuciones en probabilidad y estadistica matematica 3, 61–79 (1992)Google Scholar
  18. 18.
    Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)MATHGoogle Scholar
  19. 19.
    Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)MATHGoogle Scholar
  20. 20.
    Zambrini, J.C.: Stochastic mechanics according to E. Schrödinger. Phys. Rev. A 33(3), 1532–1548 (1986)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zambrini, J.C.: Variational processes and stochastic versions of mechanics. J. Math. Phys. 27(9), 2307–2330 (1986)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Fenyes, I.: Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik. Z. Physik 132, 81–106 (1952)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. Phys. Rev. 85, 166–179 (1952)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Levy, B.C., Krener, A.J.: Stochastic mechanics of reciprocal diffusions. J. Math. Phys. 37, 769 (1996)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Rosenbrock, H.H.: Doing quantum mechanics with control theory. IEEE Trans. Autom. Control 54, 73–77 (2000)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Dai Pra, P.: A stochastic control approach to reciprocal diffusion processes. Appl. Math. Optim. 23(1), 313–329 (1991)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Dai Pra, P., Pavon, M.: On the Markov processes of Schrödinger, the Feynman–Kac formula and stochastic control. In: Kaashoek, M.A., van Schuppen, J.H., Ran, A.C.M. (eds.) Realization and Modeling in System Theory, pp. 497–504. Birkhäuser, Boston (1990)CrossRefGoogle Scholar
  29. 29.
    Pavon, M., Wakolbinger, A.: On free energy, stochastic control, and Schrödinger processes. In: Di Masi, G.B., Gombani, A., Kurzhanski, A.A. (eds.) Modeling, Estimation and Control of Systems with Uncertainty, pp. 334–348. Birkhäuser, Boston (1991)CrossRefGoogle Scholar
  30. 30.
    Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. A 34(4), 1533–1574 (2014)CrossRefMATHGoogle Scholar
  31. 31.
    Mikami, T., Thieullen, M.: Optimal transportation problem by stochastic optimal control. SIAM J. Control Optim. 47(3), 1127–1139 (2008)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Pavon, M., Ticozzi, F.: Discrete-time classical and quantum Markovian evolutions: maximum entropy problems on path space. J. Math. Phys. 51, 042104–042125 (2010)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Léonard, C.: From the Schrödinger problem to the Monge–Kantorovich problem. J. Funct. Anal. 262, 1879–1920 (2012)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Georgiou, T.T., Pavon, M.: Positive contraction mappings for classical and quantum Schrödinger systems. J. Math. Phys. 56(033301), 1–24 (2015)MathSciNetMATHGoogle Scholar
  35. 35.
    Angenent, S., Haker, S., Tannenbaum, A.: Minimizing flows for the Monge–Kantorovich problem. SIAM J. Math. Anal. 35(1), 61–97 (2003)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Filliger, R., Hongler, M.O.: Relative entropy and efficiency measure for diffusion-mediated transport processes. J. Phys. A: Math. Gen. 38, 1247–1250 (2005)CrossRefMATHGoogle Scholar
  37. 37.
    Filliger, R., Hongler, M.O., Streit, L.: Connection between an exactly solvable stochastic optimal control problem and a nonlinear reaction-diffusion equation. J. Optim. Theory Appl. 137, 497–505 (2008)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Chen, Y., Georgiou, T.T.: Stochastic bridges of linear systems. Preprint, IEEE Trans. Autom. Control (to appear)
  39. 39.
    Chen, Y., Georgiou, T.T., Pavon, M.: Optimal steering of a linear stochastic system to a final probability distribution, Part I. preprint, IEEE Trans. Autom. Control (to appear)
  40. 40.
    Chen, Y., Georgiou, T.T., Pavon, M.: Optimal steering of a linear stochastic system to a final probability distribution, Part II. Preprint, IEEE Trans. Autom. Control (to appear)
  41. 41.
    Chen, Y., Georgiou, T.T., Pavon, M.: Optimal transport over a linear dynamical system. Preprint, (submitted for publication)
  42. 42.
    Chen, Y., Georgiou, T.T., Pavon, M.: Entropic and displacement interpolation: a computational approach using the Hilbert metric. Preprint, (submitted for publication)
  43. 43.
    Chen, Y., Georgiou, T.T., Pavon, M.: Fast cooling for a system of stochastic oscillators. Preprint, (submitted for publication)
  44. 44.
    Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes. Probab. Theory Relat. Fields 129, 245–260 (2004)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Mikami, T., Thieullen, M.: Duality theorem for the stochastic optimal control problem. Stoch. Proc. Appl. 116, 1815–1835 (2006)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Carlen, E.: Stochastic mechanics: a look back and a look ahead. In: Faris, W.G. (ed.) Diffusion, Quantum Theory and Radically Elementary Mathematics, vol. 47, pp. 117–139. Princeton University Press, Princeton (2006)Google Scholar
  47. 47.
    Kosmol, P., Pavon, M.: Lagrange Lemma and the optimal control of diffusions II: nonlinear Lagrange functionals. Syst. Control Lett. 24(3), 215–221 (1995)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Fleming, W.H., Soner, M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer, New York (2006)MATHGoogle Scholar
  49. 49.
    Tabak, E.G., Trigila, G.: Data-driven optimal transport. Commun. Pure. Appl. Math. doi: 10.1002/cpa.21588 (2014)
  50. 50.
    Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1988)CrossRefMATHGoogle Scholar
  51. 51.
    Föllmer, H.: Time Reversal on Wiener Space. Springer, New York (1986)MATHGoogle Scholar
  52. 52.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)CrossRefMATHGoogle Scholar
  53. 53.
    Wakolbinger, A.: A simplified variational characterization of Schrödinger processes. J. Math. Phys. 30(12), 2943–2946 (1989)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Pavon, M.: Stochastic control and nonequilibrium thermodynamical systems. Appl. Math. Optim. 19, 187–202 (1989)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, Berlin (1975)CrossRefMATHGoogle Scholar
  56. 56.
    Nagasawa, M.: Stochastic variational principle of Schrödinger Processes. In: Cinlar, E., Chung, K.L., Getoo, R.K., Fitzsimmons, P.J., Williams, R.J. (eds.) Seminar on Stochastic Processes, pp. 165–175. Birkhäuser, Boston (1989)Google Scholar
  57. 57.
    Pavon, M.: Hamilton’s principle in stochastic mechanics. J. Math. Phys. 36, 6774–6800 (1995)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Physik 40, 322–326 (1926)CrossRefMATHGoogle Scholar
  59. 59.
    Chen, Y., Georgiou, T.T., Pavon, M.: Optimal steering of inertial particles diffusing anisotropically with losses. In: Proceedings of the American Control Conference (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yongxin Chen
    • 1
  • Tryphon T. Georgiou
    • 1
  • Michele Pavon
    • 2
  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.Università di PadovaPadovaItaly

Personalised recommendations