Group Update Method for Sparse Minimax Problems

  • Junxiang Li
  • Mingsong Cheng
  • Bo Yu
  • Shuting Zhang


A group update algorithm is presented for solving minimax problems with a finite number of functions, whose Hessians are sparse. The method uses the gradient evaluations as efficiently as possible by updating successively the elements in partitioning groups of the columns of every Hessian in the process of iterations. The chosen direction is determined directly by the nonzero elements of the Hessians in terms of partitioning groups. The local \(q\)-superlinear convergence of the method is proved, without requiring the imposition of a strict complementarity condition, and the \(r\)-convergence rate is estimated. Furthermore, two efficient methods handling nonconvex case are given. The global convergence of one method is proved, and the local \(q\)-superlinear convergence and \(r\)-convergence rate of another method are also proved or estimated by a novel technique. The robustness and efficiency of the algorithms are verified by numerical tests.


Minimax problem Nondifferentiable optimization Sparsity Large scale Group update 

Mathematics Subject Classification

90C06 90C30 65K10 49K35 



This research was sponsored by the National Natural Science Foundation of China (No. 71090404, 71102070, 11171221, 71271138, 71202065, 71103199, 71371140, 91230103, 11171051), the Fundamental Research Funds for the Central Universities (No. DUT13LK04), Shanghai First-class Academic Discipline Projects (No. XTKX2012, S1201YL XK), the Innovation Program of Shanghai Municipal Education Commission (No. 14YZ088, 14YZ089), Programs of National Training Foundation of University of Shanghai for Science and Technology (No. 13XGM03), and the Innovation Fund Project for Graduate and Undergraduate Student of Shanghai (No. JWCXSL1302, SH2013054, XJ2014098). Authors are indebted to the reviewers and the editors for their constructive comments which greatly improved the contents and exposition of this paper.


  1. 1.
    Polak, E.: On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Rev. 29, 21–89 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Polak, E., Salcudean, S., Mayne, D.Q.: Adaptive control of ARMA plants using worst case design by semi-infinite optimization. IEEE Trans. Autom. Control 32, 388–397 (1987)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Cramer, A., Sudhoff, S., Zivi, E.: Evolutionary algorithms for minimax problems in robust design. IEEE Trans. Evol. Comput. 13(2), 444–453 (2009)CrossRefGoogle Scholar
  4. 4.
    Cai, X., Teo, K., Yang, X., Zhou, X.: Portfolio optimization under a minimax rule. Manag. Sci. 46(7), 957–972 (2000)MATHCrossRefGoogle Scholar
  5. 5.
    Bhulai, S., Koole, G., Pot, A.: Simple methods for shift scheduling in multiskill call centers. Manuf. Serv. Oper. Manag. 10(3), 411–420 (2008)Google Scholar
  6. 6.
    Mor, B., Mosheiov, G.: Minmax scheduling problems with common flow-allowance. J. Oper. Res. Soc. 63, 1284–1293 (2012)CrossRefGoogle Scholar
  7. 7.
    Ruzika, S., Thiemann, M.: Min-Max quickest path problems. Networks 60, 253–258 (2012)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, S.S., Papageorgiou, L.G.: Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry. Omega 41, 369–382 (2013)CrossRefGoogle Scholar
  9. 9.
    Polak, E., Womersley, R.S., Yin, X.H.: An algorithm based on active sets and smoothing for discretized semi-infinite minimax problems. J. Optim. Theory Appl. 138, 311–328 (2008)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Royset, J.O., Pee, E.Y.: Rate of convergence analysis of discretization and smoothing algorithms for semiinfinite minimax problems. J. Optim. Theory Appl. 155, 855–882 (2012)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lukšan L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimization. Report V-798, Prague, ICS AS CR (2000)Google Scholar
  12. 12.
    Luksan, L., Matonoha C., Vlcek, J.: Primal interior-point method for large sparse minimax optimization. Technical Report 941, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic (2005)Google Scholar
  13. 13.
    Jian, J.B., Chao, M.T.: A sequential quadratically constrained quadratic programming method for unconstrained minimax problems. J. Math. Anal. Appl. 362, 34–45 (2010)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Obasanjo, E., Tzallas-Regas, G., Rustem, B.: An interior-point algorithm for nonlinear minimax problems. J. Optim. Theory Appl. 144, 291–318 (2010)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, F.S., Wang, C.L.: An adaptive nonmonotone trust-region method with curvilinear search for minimax problem. Appl. Math. Comput. 219, 8033–8041 (2013)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, J.X., Huo, J.Z.: Inexact smoothing method for large sparse minimax optimization. Appl. Math. Comput. 218, 2750–2760 (2011)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, X.S.: An entropy-based aggregate method for minimax optimization. Eng. Optim. 18, 277–285 (1992)CrossRefGoogle Scholar
  18. 18.
    Polak, E., Royset, J.O., Womersley, R.S.: Algorithms with adaptive smoothing for finite minimax problems. J. Optim. Theory Appl. 119, 459–484 (2003)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Yu, B., Liu, G.X., Feng, G.C.: The aggregate homotopy methods for constrained sequential max-min problems. Northeast. Math. J. 19, 287–290 (2003)MathSciNetGoogle Scholar
  20. 20.
    Pee, E.Y., Royset, J.O.: On solving large-scale finite minimax problems using exponential smoothing. J. Optim. Theory Appl. 148, 390–421 (2011)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Polak, E., Mayne, D.Q., Higgins, J.E.: Superlinearly convergent algorithm for min-max problems. J. Optim. Theory Appl. 69, 407–439 (1991)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Polak, E., Mayne, D.Q., Higgins, J.E.: On the extension of Newton’s method to semi-infinite minimax problems. SIAM J. Control Optim. 30, 367–389 (1992)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, S.T., Yu, B.: A globally convergent method for nonconvex generalized semi-infinite minimax problems. Numer. Math. A 27, 316–319 (2005)Google Scholar
  24. 24.
    Li, J.X., Zhang, H.W.: On the convergence of partitioning group correction algorithms. Appl. Math. Comput. 186, 365–378 (2007)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Gill, P., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)MATHGoogle Scholar
  26. 26.
    Li, J.X., Zhang, H.W.: Partitioning group correction Cholesky techniques for large scale sparse unconstrained optimization. Appl. Math. Comput. 182, 1010–1020 (2006)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Powell, M.J.D., Toint, PhL: On the estimation of sparse Hessian matrices. SIAM J. Numer. Anal. 16, 1060–1074 (1979)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Polak, E.: Optimization Algorithm and Consistent Approximations. Springer, New York (1997)Google Scholar
  29. 29.
    Li, J.X., Gao, Y., Dai, T., Ye, C.M., Su, Q., Huo, J.Z.: Substitution Secant/finite difference method to large sparse minimax problems. J. Ind. Manag. Optim. 10, 637–663 (2014)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Yuan, Y.X., Sun, W.Y.: Optimization Theorem and Methods. Science Press, Beijing (2001)Google Scholar
  31. 31.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)MATHGoogle Scholar
  32. 32.
    Lukšan, L., Vlček, J.: Sparse and partially separable test problems for unconstrained and equality constrained optimization. Report V-767, Prague, ICS AS CR (1999)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Junxiang Li
    • 1
  • Mingsong Cheng
    • 2
  • Bo Yu
    • 2
  • Shuting Zhang
    • 3
  1. 1.Business SchoolUniversity of Shanghai for Science & TechnologyShanghaiChina
  2. 2.School of Mathematical SciencesDalian University of TechnologyDalianChina
  3. 3.School of MathematicsJilin UniversityChangchunChina

Personalised recommendations