Advertisement

Tykhonov Well-Posedness for Quasi-Equilibrium Problems

  • M. Darabi
  • J. Zafarani
Article

Abstract

We consider an extension of the notion of Tykhonov well-posedness for perturbed vector quasi-equilibrium problems. We establish some necessary and sufficient conditions for verifying these well-posedness properties. As for applications of our results, the Tykhonov well-posedness of vector variational-like inequalities and vector optimization problems is established.

Keywords

Tykhonov well-posedness Vector quasi-equilibrium problems Vector quasi-variational inequalities Vector optimization problem 

Mathematics Subject Classification

26B25 49J52 90C30 49J40 

Notes

Acknowledgments

The authors are grateful to Chief Editor and the reviewers for valuable comments and remarks. The second author was partially supported by the Center of Excellence for Mathematics, University of Isfahan, Iran.

References

  1. 1.
    Tykhonov, A.N.: On the stability of the functional optimization problem. USSR J. Comput. Math. Math. Phys. 6, 631–634 (1966)Google Scholar
  2. 2.
    Levitin, E.S., Polyak, B.T.: Convergence of minimizing sequences in conditional extremum problems. Sov. Math. Dokl. 7, 764–767 (1966)MATHGoogle Scholar
  3. 3.
    Dontchev, A.L., Zolezzi, T.: Well-Posed Optimization Problems. Springer, Berlin (1993)MATHGoogle Scholar
  4. 4.
    Zolezzi, T.: Well-posedness criteria in optimization with application to the calculus of variations. Nonlinear Anal. 25, 437–453 (1995)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Zolezzi, T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91, 257–266 (1996)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Crespi, G.P., Guerraggio, A., Rocca, M.: Well posedness in vector optimization problems and vector variational inequalities. J. Optim. Theory Appl. 132, 213–226 (2007)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Crespi, G.P., Papalia, M., Rocca, M.: Extended well-posedness of quasiconvex vector optimization problems. J. Optim. Theory Appl. 141, 285–297 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kettner, L.J., Deng, D.: On well-posedness and Hausdorff convergence of solution sets of vector optimization problems. J. Optim. Theory Appl. 153, 619–632 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Miglierina, E., Molho, E.: Well-posedness and convexity in vector optimization. Math. Methods Oper. Res. 58, 375–385 (2003)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Peng, L.H., Li, C., Yao, J.C.: Well-posedness of a class of perturbed optimization problems in Banach spaces. J. Math. Anal. Appl. 346, 384–394 (2008)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Wang, G., Huang, X.X.: Levitin–Polyak well-posedness for optimization problems with generalized equilibrium constraints. J. Optim. Theory Appl. 153, 27–41 (2012)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Zeng, J., Li, S.J., Zhang, W.Y., Xue, X.W.: Hadamard well-poseness for set-valued optimization problem. Optim. Lett. 7, 559–573 (2013)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Bianchi, M., Kassay, G., Pini, P.: Well-posed for vector equilibrium problems. Math. Methods Oper. Res. 70, 171–182 (2009)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Bianchi, M., Kassay, G., Pini, P.: Well-posed equilibrium problems. Nonlinear Anal. 72, 460–468 (2010)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Anh, L.Q., Khanh, P.Q., Van, D.T.M.: Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints. J. Optim. Theory Appl. 153, 42–59 (2012)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Ceng, L.C., Yao, J.C.: Well-posedness of generalized mixed variational inequalities, inclusion problems and fixed point problems. Nonlinear Anal. 69, 4585–4603 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Ceng, L.C., Hadjisavvas, N., Schaible, S., Yao, J.C.: Well-posedness for mixed quasivariational-like inequalities. J. Optim. Theory Appl. 139, 109–125 (2008)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Fang, Y.P., Huang, N.J., Yao, J.C.: Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems. J. Glob. Optim. 41, 117–133 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Fang, Y.P., Huang, N.J., Yao, J.C.: Well-posedness by perturbations of mixed variational inequalities in Banach spaces. Eur. J. Oper. Res. 201, 682–692 (2010)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Hu, R., Fang, Y.P., Huang, N.J.: Levitin–Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. J. Ind. Manag. Optim. 6, 465–481 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Hu, R., Fang, Y.P.: Levitin–Polyak well-posedness by perturbations of invers variational inequalities. Optim. Lett. 7, 343–359 (2013)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Wang, S.H., Huang, N.J., O’Regon, D.: Well-posedness for generalized quasi-variatioanl inclusion problems and for optimization problems with constraints. J. Glob. Optim. 55, 189–208 (2013)CrossRefMATHGoogle Scholar
  23. 23.
    Xiao, Y.B., Huang, N.J.: Well-posedness for a class of variational–hemivariational inequalities with perturbations. J. Optim. Theory Appl. 151, 33–51 (2011)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Lignola, M.B., Morgan, J.: \(\alpha \)-Well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints. J. Glob. Optim. 36, 439–459 (2006)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Margiocco, M., Patrone, F., Pusillo, L.: A new approach to Tykhonov well-posedness for Nash equilibria. Optimization 40, 385–400 (1997)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Morgan, J.: Approximations and well-posedness in multicriteria games. Ann. Oper. Res. 137, 257–268 (2005)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Peng, J.W., Wu, S.Y.: The well-posedness for multiobjective generalized games. J. Optim. theory Appl. 150, 416–423 (2011)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Anh, L.Q., Khanh, P.Q.: On the stability of the solution sets of general multivalued vector quasiequilibrium problems. J. Optim. Theory Appl. 135, 271–284 (2007)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Anh, L.Q., Khanh, P.Q., Van, D.T.M., Yao, J.C.: Well-posedness for vector quasiequilibria. Taiwan. J. Math. 13, 713–737 (2009)MATHMathSciNetGoogle Scholar
  30. 30.
    Li, Qy, Wang, S.H.: Well-posedness for parametric strong vector quasi-equilibrium problems with applications. Fixed Point Theory Appl. 2011, 62 (2011)CrossRefGoogle Scholar
  31. 31.
    Peng, J.W., Wu, S.Y.: The generalized Tykhonov well-posedness for system of vector quasi-equilibrium problems. Optim. Lett. 4, 501–512 (2010)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Anh, L.Q., Khanh, P.Q.: Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems. J. Math. Anal. Appl. 294, 699–711 (2004)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Agarwal, R.P., Balaj, M., O\(^{\prime }\)Regan, D.: A unifying approach to variational relation problems. J. Optim. Theory appl. 155, 417–429 (2012)Google Scholar
  34. 34.
    Balaj, M., Lin, J.L.: Existence criteria for the solutions of two types of variational relation problems. J. Optim. Theory appl. 156, 232–246 (2013)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Lin, J.L., Huang, Y.J.: Generalized vector quasi-equilibrium problems with applications to common fixed point theorems and optimization problems. Nonlinear Anal. 66, 1275–1289 (2007)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Hou, S.S., Yu, H., Chen, G.Y.: On vector quasi-equilibrium problems with set-valued maps. J. Optim. Theory appl. 119, 485–498 (2012)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Fu, J., Wang, S.: Generalized strong vector quasi-equilibrium with domination structure. J. Glob. Optim. 55, 839–847 (2013)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Anh, L.Q., Khanh, P.Q.: Various kinds of semicontinuity and the solution sets of parametric multivalued symmetric vector quasiequilibrium problems. J. Glob. Optim. 41, 539–558 (2008)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Anh, L.Q., Khanh, P.Q.: Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems. Num. Funct. Anal. Optim. 29, 24–42 (2008)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Li, B.Y., Su, J.B.: Transfer open or closed set-valued mapping and generalization of H-KKM theorem with applications. Appl. Math. Mech. 15, 981–987 (1994)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer, Berlin (2006)MATHGoogle Scholar
  42. 42.
    Fakhar, M., Zafarani, J.: A new version of Fan’s theorem and its applications. CUBO Math. J. 10, 137–147 (2008)MATHMathSciNetGoogle Scholar
  43. 43.
    Sach, P.H.: On a class of generalized vector quasiequilibrium problems with set-valued maps. J. Optim. Theory Appl. 139, 337–350 (2008)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Giannessi, F.: On Minty Variational Principle. New Trends in Mathematical Programming. Kluwer Academic, Dordrecht (1997)Google Scholar
  45. 45.
    Crespi, G.P., Ginchev, I., Rocca, M.: Some remarks on the Minty vector variational principle. J. Math. Anal. Appl. 345, 165–175 (2008)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Al-Homidan, S., Ansari, Q.H.: Generalized minty vector variational-like inequalities and vector optimization problems. J. Optim. Theory Appl. 144, 1–11 (2010)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Chen, B., Huang, N.J.: Vector variational-like inequalities and vector optimization problems in Asplund spaces. Optim. Lett. 6, 1513–1525 (2012)CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    Oveisiha, M., Zafarani, J.: Vector optimization problem and generalized convexity. J. Glob. Optim. 52, 29–43 (2012)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Rezaie, M., Zafarani, J.: Vector optimization and variational-like inequalities. J. Glob. Optim. 43, 47–66 (2009)CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Crespi, G.P., Ginchev, I., Rocca, M.: Minty variational inequalities, increase along rays property and optimization. J. Optim. Theory Appl. 123, 479–496 (2004)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Chiang, Y.: Semicontinuous mapping in T. V. S. with applications to mixed vector variational-like inequalities. J. Glob. Optim. 32, 467–486 (2005)CrossRefMATHGoogle Scholar
  52. 52.
    Swartz, C.: Functional Analysis. Marcel Dekker, New York (1992)MATHGoogle Scholar
  53. 53.
    Fang, Y.P., Hu, R.: Parametric well-posedness for variational inequalities defined by bifunctions. Comput. Math. Appl. 53, 1306–1316 (2007)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Lalitha, C.S., Bhatia, G.: Well-posedness for parametric quasivariational inequality problems and for optimization problems with quasivariational inequality constraints. Optimization 59, 997–1011 (2010)CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Zolezzi, T.: Well-posedness and optimization under perturbations. Ann. Oper. Res. 101, 351–361 (2001)CrossRefMATHMathSciNetGoogle Scholar
  56. 56.
    Bianchi, M., Pini, P.: Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124, 79–92 (2005)CrossRefMATHMathSciNetGoogle Scholar
  57. 57.
    Farajzadeh, A.P., Zafarani, J.: Equilibrium problems and variational inequalities in topological vector spaces. Optimization 59, 485–499 (2010)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IsfahanIsfahanIran
  2. 2.Department of MathematicsSheikhbahaee University and University of IsfahanIsfahanIran

Personalised recommendations