Advertisement

Journal of Optimization Theory and Applications

, Volume 164, Issue 1, pp 92–108 | Cite as

Stability Results of Variational Systems Under Openness with Respect to Fixed Sets

  • M. Bianchi
  • G. Kassay
  • R. Pini
Article
  • 269 Downloads

Abstract

In this paper, we present the notions of openness and metric regularity for a set-valued map with respect to two fixed sets, proving their equivalence. By using different approaches, we show the stability, with respect to the sum of maps, of the openness property, both in the setting of Banach spaces and of metric spaces. Finally, we infer the regularity of the map solving a generalized parametric equation defined via a parametric map that is, in its turn, perturbed by the sum with another map.

Keywords

Linear openness Metric regularity Sum of maps Generalized equation Sensitivity analysis Fixed point theorem Ekeland’s variational principle 

Mathematics Subject Classification (2000)

49J53 49K40 90C31 

Notes

Acknowledgments

The work of the second author was supported by a Grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0024. The first and third authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

  1. 1.
    Lyusternik, V.A.: On the conditional extrema of functionals. Math. Sbornik 41, 390–401 (1934)MATHGoogle Scholar
  2. 2.
    Graves, L.M.: Some mapping theorems. Duke Math. J. 17, 111–114 (1950)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Ioffe, A.D.: Metric regularity and subdifferential calculus (Russian). Uspekhi Mat. Nauk 55, 103–162 (2000). Translation in Russian Math. Surveys 55, 501–558 (2000).CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer, Dordrecht (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Penot, J.-P.: Calculus Without Derivatives. Graduate Texts in Mathematics. 266. Springer, New York (2013).Google Scholar
  7. 7.
    Arutyunov, A.V.: Covering mappings in metric spaces and fixed points. Dokl. Math. 76, 665–668 (2007)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Durea, R., Strugariu, R.: Chain rules for linear openness in general Banach spaces. SIAM J. Optim. 22, 899–913 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Durea, R., Strugariu, R.: Openness stability and implicit multifunction theorems: applications to variational systems. Nonlinear Anal. 75, 1246–1259 (2012)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Ngai, H.V.; Tron, N.; Théra, M.: Metric regularity of the sum of multifunctions and applications. J. Optim. Theory Appl. (2013). doi: 10.1007/s10957-013-0385-6
  11. 11.
    Dontchev, A.L., Frankowska, H.: Lyusternik-Graves theorem and fixed points. Proc. Amer. Math. Soc. 139, 521–534 (2011)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Dontchev, A.L., Frankowska, H.: Lyusternik-Graves theorem and fixed points II. J. Convex Anal. 19, 955–973 (2012)MATHMathSciNetGoogle Scholar
  13. 13.
    Bianchi, M., Kassay, G., Pini, R.: An inverse map result and some applications to sensitivity of generalized equations. J. Math. Anal. Appl. 339, 279–290 (2013)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Nadler, S.B.: Multivalued contraction mappings. Pacific J. Math. 30, 475–488 (1969)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Lim, T.C.: On fixed point stability for set-valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110, 436–441 (1985)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
  17. 17.
    Bianchi, M., Miglierina, E., Molho, E., Pini, R.: Some results on condition numbers in convex multiobjective optimization. Set-Valued Anal. 21, 47–65 (2013)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, Berlin (2006)Google Scholar
  19. 19.
    Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Università Cattolica del Sacro CuoreMilanoItaly
  2. 2.Babeş-Bolyai UniversityClujRomania
  3. 3.Università degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations