Skip to main content

Advertisement

Log in

A Direct Splitting Method for Nonsmooth Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We propose a direct splitting method for solving a nonsmooth variational inequality in Hilbert spaces. The weak convergence is established when the operator is the sum of two point-to-set and monotone operators. The proposed method is a natural extension of the incremental subgradient method for nondifferentiable optimization, which strongly explores the structure of the operator using projected subgradient-like techniques. The advantage of our method is that any nontrivial subproblem must be solved, like the evaluation of the resolvent operator. The necessity to compute proximal iterations is the main difficulty of other schemes for solving this kind of problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin, J.E.: L’Analyse non linéaire et ses motivations économiques. Masson, Paris (1984)

    Google Scholar 

  2. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities. Applications to Free Boundary Problems. Wiley, New York (1988)

    MATH  Google Scholar 

  3. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fang, S.C., Petersen, E.L.: Generalized variational inequalities. J. Optim. Theory Appl. 38, 363–383 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Todd, M.J.: The Computations of Fixed Points and Applications. Springer, Berlin (1976)

    Google Scholar 

  6. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  7. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. Springer, New York (2012)

    MATH  Google Scholar 

  8. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, Berlin (2003)

    Google Scholar 

  9. Iusem, A.N.: On some properties of paramonotone operators. J. Convex Anal. 5, 269–278 (1998)

    MATH  MathSciNet  Google Scholar 

  10. Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Add. Optim. 43, 85 (1998)

    Google Scholar 

  12. Khobotov, E.N.: Modifications of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1987)

    MATH  MathSciNet  Google Scholar 

  13. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Èkon. Mat. Metody 12, 747–756 (1976)

    MATH  Google Scholar 

  14. Solodov, M.V., Svaiter, B.F.: A new projection method for monotone variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    MATH  MathSciNet  Google Scholar 

  15. Solodov, M.V., Tseng, P.: Modified projection-type methods for monotone variational inequalities. SIAM J. Control Optim. 34, 1814–1830 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Bao, T.Q., Khanh, P.Q.: A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities. Nonconv. Optim. Appl. 77, 113–129 (2005)

    MathSciNet  Google Scholar 

  17. Iusem, A.N., Lucambio Pérez, L.R.: An extragradient-type method for non-smooth variational inequalities. Optimization 48, 309–332 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)

    MATH  Google Scholar 

  19. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    MATH  MathSciNet  Google Scholar 

  20. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7, 323–345 (1999)

    MATH  MathSciNet  Google Scholar 

  22. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    MATH  MathSciNet  Google Scholar 

  23. Konnov, I.V.: Splitting-type method for systems of variational inequalities. Comput. Oper. Res. 33, 520–534 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Moudafi, A.: On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 359, 508–513 (2009)

    MATH  MathSciNet  Google Scholar 

  25. Lassonde, M., Nagesseur, L.: Extended forward-backward algorithm. J. Math. Anal. Appl. 403, 167–172 (2013)

    MATH  MathSciNet  Google Scholar 

  26. Zhang, H., Cheng, L.: Projective splitting methods for sums of maximal monotone operators with applications. J. Math. Anal. Appl. 406, 323–334 (2013)

    MathSciNet  Google Scholar 

  27. Nedic, A., Bertsekas, D.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 12, 109–138 (2001)

    MATH  MathSciNet  Google Scholar 

  28. Bello Cruz, J.Y., Iusem, A.N.: An explicit algorithm for monotone variational inequalities. Optimization 61, 855–871 (2012)

    MATH  MathSciNet  Google Scholar 

  29. Bello Cruz, J.Y., Iusem, A.N.: Convergence of direct methods for paramonotone variational inequalities. Comput. Optim. Appl. 46, 247–263 (2010)

    MATH  MathSciNet  Google Scholar 

  30. Bello Cruz, J.Y., Iusem, A.N.: Full convergence of an approximate projection method for nonsmooth variational inequalities. Math. Comput. Simul. (2010). doi:10.1016/j.matcom.2010.05.026

    Google Scholar 

  31. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E. (ed.) Contributions to Nonlinear Functional Analysis, pp. 237–424. Academic Press, New York (1971)

    Google Scholar 

  32. Ermoliev, Yu.M.: On the method of generalized stochastic gradients and quasi-Fejér sequences. Cybern. Syst. Anal. 5, 208–220 (1969)

    Google Scholar 

  33. Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math. Oper. Res. 19, 790–814 (1994)

    MATH  MathSciNet  Google Scholar 

  34. Alber, Ya.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81, 23–37 (1998)

    MATH  MathSciNet  Google Scholar 

  35. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent direct method for monotone variational inequalities in Hilbert spaces. Numer. Funct. Anal. Optim. 30, 23–36 (2009)

    MATH  MathSciNet  Google Scholar 

  36. Shih, M.H., Tan, K.K.: Browder–Hartmann–Stampacchia variational inequalities for multi-valued monotone operators. J. Math. Anal. Appl. 134, 431–440 (1988)

    MATH  MathSciNet  Google Scholar 

  37. Alber, Ya.I.: Recurrence relations and variational inequalities. Sov. Math. Dokl. 27, 511–517 (1983)

    Google Scholar 

  38. Fukushima, M.: A relaxed projection for variational inequalities. Math. Program. 35, 58–70 (1986)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq. Research for this paper was partially supported by PRONEX, PROCAD-nf—UFG/UnB/IMPA and by project CAPES-MES-CUBA 226/2012 “Modelos de Otimização e Aplicações”. The second author was supported by a scholarship for his doctoral studies, granted by CAPES. The authors would like to extend gratitude toward the anonymous referees whose suggestions helped us to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Bello Cruz.

Additional information

Communicated by Alfredo N. Iusem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bello Cruz, J.Y., Díaz Millán, R. A Direct Splitting Method for Nonsmooth Variational Inequalities. J Optim Theory Appl 161, 728–737 (2014). https://doi.org/10.1007/s10957-013-0478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0478-2

Keywords

Navigation