A Simpler Explicit Iterative Algorithm for a Class of Variational Inequalities in Hilbert Spaces

  • Haiyun Zhou
  • Peiyuan Wang


In the present paper, we propose a simpler explicit iterative algorithm for finding a solution for variational inequalities over the set of common fixed points of a finite family of nonexpansive mappings on Hilbert spaces. A strong convergence theorem is proved under fewer restrictions imposed on the mappings and parameters. An extension and numerical result are also given to illustrate the effectiveness and superiority of the proposed algorithm.


Variational inequalities Hybrid steepest-descent method Averaged mappings Common fixed points 



The authors would like to thank the editors and the referees for their valuable comments and suggestions which improved the original submission of this paper. This work is supported by the National Natural Science Foundation of China (11071053).


  1. 1.
    Hartman, P., Stampacchia, G.: On some nonlinear elliptic differential functional equations. Acta. Math. 115, 271–310 (1996) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Browder, F.E.: Nonlinear monotone operators and convex sets in Banach spaces. Bull. Am. Math. Soc. 71, 780–785 (1965) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Browder, F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041–1044 (1965) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Browder, F.E.: Existence and approximation of solutions of nonlinear variational inequalities. Proc. Natl. Acad. Sci. USA 56, 1080–1086 (1966) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971) CrossRefMATHGoogle Scholar
  6. 6.
    Lions, J.L., Stampaccchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967) CrossRefMATHGoogle Scholar
  7. 7.
    Duvaut, D., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976) CrossRefMATHGoogle Scholar
  8. 8.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980) MATHGoogle Scholar
  9. 9.
    Hlavacek, I., Haslinger, J., Necas, J., Lovicek, J.: Solution of Variational Inequalities in Mechanics. Springer, New York (1982) Google Scholar
  10. 10.
    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984) CrossRefMATHGoogle Scholar
  11. 11.
    Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Birkhäuser, Boston (1985) CrossRefMATHGoogle Scholar
  12. 12.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications. Springer, New York (1985) CrossRefMATHGoogle Scholar
  13. 13.
    Yamada, Y.: The hybrid steepest-descent method for variational inequalities problems over the intersection of the fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 473–504. North-Holland, Amsterdam (2001) CrossRefGoogle Scholar
  14. 14.
    Xu, H.K., Kim, T.H.: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl. 119, 185–201 (2003) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Liu, X., Cui, Y.: The common minimal-norm fixed point of a finite family of nonexpansive mappings. Nonlinear Anal. 73, 76–83 (2010) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Buong, D., Duong, L.T.: An explicit iterative algorithm for a class of variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 151, 513–524 (2011) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Xu, H.K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006) CrossRefMATHGoogle Scholar
  19. 19.
    Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010) CrossRefGoogle Scholar
  20. 20.
    Xu, H.K.: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 150, 360–378 (2011) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    López, G., Martin, V., Xu, H.K.: Iterative algorithm for the multiple-sets split feasibility problem. In: Biomedical Math, pp. 243–279 (2009) Google Scholar
  22. 22.
    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Math., vol. 28. Cambridge University Press, Cambridge (1990) CrossRefMATHGoogle Scholar
  23. 23.
    Suzuki, T.: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. Am. Math. Soc. 135, 99–106 (2007) CrossRefMATHGoogle Scholar
  24. 24.
    Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Zhou, H.: Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 69, 456–462 (2008) CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Gerchberg, R.W.: Super-restoration through error energy reduction. Opt. Acta 21, 709–720 (1974) CrossRefGoogle Scholar
  27. 27.
    Papoulis, A.: A new algorithm in spectral analysis and band-limited extrapolation. IEEE Trans. Circuits Syst. 22, 735–742 (1975) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Piana, M., Bertero, M.: Projected Landweber method and preconditioning. Inverse Probl. 13, 441–463 (1997) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsShijiazhuang Mechanical Engineering CollegeShijiazhuangChina

Personalised recommendations