Skip to main content
Log in

A Full Nesterov–Todd Step Infeasible Interior-Point Method for Second-Order Cone Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

After a brief introduction to Jordan algebras, we present a primal–dual interior-point algorithm for second-order conic optimization that uses full Nesterov–Todd steps; no line searches are required. The number of iterations of the algorithm coincides with the currently best iteration bound for second-order conic optimization. We also generalize an infeasible interior-point method for linear optimization to second-order conic optimization. As usual for infeasible interior-point methods, the starting point depends on a positive number. The algorithm either finds a solution in a finite number of iterations or determines that the primal–dual problem pair has no optimal solution with vanishing duality gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2

Similar content being viewed by others

Notes

  1. One should be careful here. If xs=e, then s is not necessarily equal to x −1. For an example, see [31, Example 2.1.8].

  2. Observe that this means that the determinant of P(x), being the product of its eigenvalues, equals det(x)n.

  3. By Proposition 3 in the appendix of [34], W is an automorphism iff WRW=λR for some λ>0. This condition implies (WR)2=λE n . Since det(R)2=1, it follows that λ n=det(W 2)=det(P(w))=det(w)n, whence λ=det(w).

References

  1. Lobo, M.S., Vandenberghe, L., Boyd, S.E., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Vanderbei, R.J., Yurttan, H.: Using LOQO to solve second-order cone programming problems. Report sor 98-09, Princeton University, Princeton, USA (1998)

  3. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. International Series in Operations Research & Management Science, vol. 27. Kluwer, Boston (2000)

    Google Scholar 

  4. Ji, J., Potra, F.A., Sheng, R.: On the local convergence of predictor-corrector method for semidefinite programming. SIAM J. Optim. 10(1), 195–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ji, J., Potra, F.A., Sheng, R.: On a general class of interior-point algorithms for semidefinite with polynomial complexity and super convergence programming. Methods Appl. Anal. 6(4) (1999)

  6. Potra, F.A., Sheng, R.: A superlinearly convergent primal–dual infeasible-interior-point algorithm for semidefinite programming. SIAM J. Optim. 8(4), 1007–1028 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Potra, F.A., Sheng, R.: On homogeneous interior-point algorithms for semidefinite programming. Optim. Methods Softw. 9, 161–184 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nesterov, Y.E., Nemirovskii, A.S.: Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM, Philadelphia (1993)

    Google Scholar 

  9. Nesterov, Y.E., Todd, M.J.: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22(1), 1–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nesterov, Y.E., Todd, M.J.: Primal–dual interior-point methods for self-scaled cones. SIAM J. Optim. 8(2), 324–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Adler, I., Alizadeh, F.: Primal–dual interior point algorithms for convex quadratically constrained and semidefinite optimization problems. Technical Report RRR-111-95, Rutger Center for Operations Research, Brunswick, NJ (1995)

  12. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schmieta, S.H., Alizadeh, F.: Associative and Jordan algebras, and polynomial time interior-point algorithms for symmetric cones. Math. Oper. Res. 26(3), 543–564 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schmieta, S.H., Alizadeh, F.: Extension of polynimal time interior-point algorithms to symmetric cones. Math. Program. 96(3), 409–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Faybusovich, L.: Linear system in Jordan algebras and primal–dual interior-point algorithms. J. Comput. Appl. Math. 86(1), 149–175 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peng, J., Roos, C., Terlaky, T.: Self-regular functions and new search directions for linear and semidefinite optimization. Math. Program. 93, 129–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peng, J., Roos, C., Terlaky, T.: Self-Regularity. A New Paradigm for Primal–Dual Interior-Point Algorithms. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  18. Bai, Y.Q., Wang, G.Q., Roos, C.: Primal–dual interior-point algorithms for second-order cone optimization based on kernel functions. Nonlinear Anal. 70(10), 3584–3602 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kojima, M., Megiddo, N., Mizuno, S.: A primal–dual infeasible-interior-point algorithm for linear programming. Math. Program. 61, 263–280 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y.: On the convergence of a class of infeasible-interior-point methods for the horizontal linear complementarity problem. SIAM J. Optim. 4, 208–227 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mizuno, S.: Polynomiality of infeasible interior point algorithms for linear programming. Math. Program. 67, 109–119 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Potra, F.A.: A quadratically convergent predictor-corrector method for solving linear programs from infeasible starting points. Math. Program. 67, 383–406 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Potra, F.A.: An infeasible-interior-point predictor-corrector algorithm for linear programming. SIAM J. Optim. 6(1), 19–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Y.: On extending primal–dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim. 8(2), 365–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rangarajan, B.K.: Polynomial convergence of infeasible-interior-point methods over symmetric cones. SIAM J. Optim. 16(4), 1211–1229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roos, C.: A full-Newton step O(n) infeasible interior-point algorithm for linear optimization. SIAM J. Optim. 16(4), 1110–1136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mansouri, H.: Full-Newton step interior-point methods for conic optimization. PhD thesis, ISBN 978-90-9023179-2. Faculty of Electrical Engineering, Mathematics and Computer Science, The Netherlands (2008)

  28. Faraut, J., Koranyi, A.: Analysis on symmetric cones. Oxford University Press, New York (1994)

    MATH  Google Scholar 

  29. Koecher, M.: The Minnesota Notes on Jordan Algebras and Their Applications. Lecture Notes in Mathematics, vol. 1710. Springer, Berlin (1999). Edited, annotated and with a preface by Aloys Krieg and Sebastian Walcher

    MATH  Google Scholar 

  30. McCrimmon, K.: A Taste of Jordan Algebras. Universitext. Springer, New York (2004)

    MATH  Google Scholar 

  31. Vieira, M.V.C.: Jordan algebraic approach to symmetric optimization. PhD thesis, ISBN 978-90-6464-189-3. Faculty of Electrical Engineering, Mathematics and Computer Science, The Netherlands (2007)

  32. Lim, Y.: Geometric means on symmetric cones. Arch. Math. (Basel) 75(1), 39–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sturm, J.: Similarity and other spectral relations for symmetric cones. Linear Algebra Appl. 312(1–3), 135–154 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Monteiro, R.D.C., Tsuchiya, T.: Polynomial convergence of primal–dual algorithms for the second-order program based on the MZ-family of directions. Math. Program. 88, 61–83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Roos, C., Terlaky, T., Vial, J.-P.: Theory and Algorithms for Linear Optimization. An Interior-Point Approach. Wiley, Chichester (1997) (2001). (2nd edn. Springer, Berlin (2005))

    MATH  Google Scholar 

  36. Mizuno, S., Todd, M.J., Ye, Y.: A surface of analytic centers and primal–dual infeasible-interior-point algorithms for linear programming. Math. Oper. Res. 20(1), 135–162 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Freund, R.M.: An infeasible-start algorithm for linear programming whose complexity depends on the distance from the starting point to the optimal solution. Ann. Oper. Res. 62, 29–57 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mansouri, H., Roos, C.: A simplified O(nL) infeasible interior-point algorithm for linear optimization using full Newton steps. Optim. Methods Softw. 22(3), 519–530 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mansouri, H., Zangiabadi, M.: An adaptive infeasible interior-point algorithm with full-Newton step for linear optimization. J. Optim. (2011). doi:10.1080/02331934.2011.611881

    Google Scholar 

  40. Mansouri, H., Roos, C.: A new full-Newton step O(n) infeasible interior-point algorithm for semidefinite optimization. J. Numer. Algorithms 52(2), 225–255 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mansouri, H., Zangiabadi, M., Pirhaji, M.: A full-Newton step O(n) infeasible interior-point algorithm for linear complementarity problems. Nonlinear Anal., Real World Appl. 12, 545–561 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Professor Florian Potra and four anonymous referees for useful comments and suggestions on an earlier draft of the manuscript. The first author would like to thank for the financial grant from Shahrekord University. The first author was also partially supported by the Center of Excellence for Mathematics, University of Shahrekord, Shahrekord, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zangiabadi.

Additional information

Communicated by Anil Rao.

Appendix A: Technical Lemmas

Appendix A: Technical Lemmas

Lemma A.1

For i=1,…,n, let f i :ℝ+→ℝ denote a convex function. Then we have, for any nonzero vector \(z\in{\mathbb{R}}_{+}^{n}\), the following inequality:

$$\sum_{i=1}^n f_i(z_i) \le\frac{1}{e^Tz}\sum_{j=1}^n z_j \biggl(f_j\bigl(e^Tz\bigr)+ \sum _{i\ne j} f_i(0)\biggr). $$

Proof

We define the function \(F:{\mathbb{R}}_{+}^{n}\rightarrow {\mathbb{R}}\) by

$$F(z) = \sum_{i=1}^n f_i(z_i), \quad z\ge0. $$

Letting e j denote the jth unit vector in ℝn, we may write z as a convex combination of the vectors (e T z)e j , as follows.

$$z=\sum_{j=1}^n \frac{z_j}{e^Tz} \bigl(e^Tz\bigr)e_j, $$

Indeed, \(\sum_{j=1}^{n} \frac{z_{j}}{e^{T}z}=1\) and z j /e T z≥0 for each j. Since F(z) is a sum of convex functions, F(z) is convex in z, and hence we have

$$F(z) \le\sum_{j=1}^n \frac{z_j}{e^Tz} F \bigl( \bigl(e^Tz\bigr)e_j\bigr) =\sum _{j=1}^n \frac{z_j}{e^Tz} \sum _{i=1}^n f_i\bigl(\bigl(e^Tz \bigr) (e_j)_i\bigr). $$

Since (e j ) i =1 if i=j and zero if ij, we obtain

$$F(z) \le\sum_{j=1}^n \frac{z_j}{e^Tz} \biggl(f_j\bigl(e^Tz\bigr)+ \sum _{i\ne j} f_i(0)\biggr). $$

Hence the inequality in the lemma follows. □

Corollary A.1

Let f:ℝ+→ℝ be a convex function such that f(0)=0. Then we have, for any vector \(z\in{\mathbb{R}}_{+}^{n}\), the following inequality:

$$\sum_{i=1}^n f(z_i) \le f \Biggl(\sum_{i=1}^n z_i \Biggr). $$

Proof

In Lemma A.1, take f i =f for each i; then the result follows. □

In the lemma below, we use that the cone \(\mathcal{K}\) of squares in a Euclidean Jordan algebra defines a partial ordering \(\preceq_{\mathcal{K}}\) of ℝn according to the definition

$$x\preceq_{\mathcal{K}} s \quad\Leftrightarrow\quad s-x\in\mathcal{K}. $$

Lemma A.2

Let x,s∈ℝn and x T s=0, then one has

  1. (i)

    \(-\frac{1}{4}\| x+s \|^{2}_{F}e \preceq_{\mathcal{K}} x\circ s \preceq_{\mathcal{K}} \frac{1}{4}\| x+s \|^{2}_{F}e\);

  2. (ii)

    \(\| x\circ s \|_{F} \le\frac{1}{2\sqrt{2}}\| x+s \|_{F}^{2}\).

Proof

We write

$$ x\circ s = \frac{1}{4}\bigl((x+s)^2 - (x-s)^2\bigr). $$
(88)

Since (x+s)2 is a square, it belongs to \(\mathcal{K}\). This means that \(x\circ s + \frac {1}{4}(x-s)^{2}\in \mathcal{K}\), or, equivalently,

$$x\circ s \succeq_{\mathcal{K}} -\frac{1}{4}(x-s)^2. $$

Since \(x\preceq_{\mathcal{K}} \| x \|_{F}e\) for every x, also using Lemma 2.5(i), we may write

$$(x-s)^2 \preceq_{\mathcal{K}} \| (x-s)^2 \|_Fe \preceq_{\mathcal {K}} \| x-s \|^2_Fe, $$

whence it follows that

$$x\circ s \succeq_{\mathcal{K}} -\frac{1}{4}(x-s)^2 \succeq_{\mathcal {K}} -\frac{1}{4}\| x-s \|^2_Fe. $$

In the same way one derives from (88) that

$$x\circ s \preceq_{\mathcal{K}} \frac{1}{4}(x+s)^2 \preceq_{\mathcal {K}} \frac{1}{4}\| x+s \|^2_Fe. $$

Thus we have shown that one has, for all x,s∈ℝn,

$$-\frac{1}{4}\| x-s \|^2_Fe \preceq_{\mathcal{K}} x\circ s \preceq_{\mathcal{K}} \frac{1}{4}\| x+s \|^2_Fe. $$

Since x and s are orthogonal, we have \({\operatorname{tr}}(x\circ s) = 2x^{T}s = 0\), whence ∥x+s F =∥xs F . Hence part (i) of the lemma follows.

For the proof of (ii) we return to (88). Using \(\| z \|_{F}^{2} = {\operatorname{tr}}(z^{2})\), we obtain

Since (x+s)2 and (xs)2 belong to \(\mathcal{K}\), the trace of their product is nonnegative. Thus we obtain

Using Lemma 2.5(i) and ∥x+s F =∥xs F again, we get

This implies (ii). Hence the proof of the lemma is complete. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zangiabadi, M., Gu, G. & Roos, C. A Full Nesterov–Todd Step Infeasible Interior-Point Method for Second-Order Cone Optimization. J Optim Theory Appl 158, 816–858 (2013). https://doi.org/10.1007/s10957-013-0278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0278-8

Keywords

Navigation