A Unified Approach for Constrained Extremum Problems: Image Space Analysis

  • J. Li
  • S. Q. Feng
  • Z. Zhang


In this paper, by exploiting the image space analysis we investigate a class of constrained extremum problems, the constraining function of which is set-valued. We show that a (regular) linear separation in the image space is equivalent to the existence of saddle points of Lagrangian and generalized Lagrangian functions and we also give Lagrangian type optimality conditions for the class of constrained extremum problems under suitable generalized convexity and compactness assumptions. Moreover, we consider an exact penalty problem for the class of constrained extremum problems and prove that it is equivalent to the existence of a regular linear separation under suitable generalized convexity and compactness assumptions.


Image space analysis Linear separation Saddle points Penalty methods Constrained extremum problems 



The research was supported by the Natural Science Foundation of China, Project 60804065; the Key Project of Chinese Ministry of Education, Project 211163; and Sichuan Youth Science and Technology Foundation, Project 2012JQ0032.

The authors wish to thank Professor J. Zafarani and two anonymous referees for the careful reading of the paper and valuable comments and suggestions.


  1. 1.
    Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 60, 331–365 (1984) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000) MATHGoogle Scholar
  3. 3.
    Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control Optim. 29, 968–998 (1991) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chinaie, M., Zafarani, J.: Image space analysis and scalarization of multivalued optimization. J. Optim. Theory Appl. 142, 451–467 (2009) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dien, P.H., Mastroeni, G., Pappalardo, M., Quang, P.H.: Regularity conditions for constrained extremum problems via image space. J. Optim. Theory Appl. 80, 19–37 (1994) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27, 1333–1360 (1989) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fletcher, R.: Practical Methods of Optimization. Wiley, New York (1987) MATHGoogle Scholar
  8. 8.
    Giannessi, F.: Constrained Optimization and Image Space Analysis. Springer, New York (2005) MATHGoogle Scholar
  9. 9.
    Giannessi, F.: On the theory of Lagrangian duality. Optim. Lett. 1, 9–20 (2007) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Giannessi, F., Mastroeni, G.: Separation of sets and Wolfe duality. J. Glob. Optim. 42, 401–412 (2008) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Giannessi, F., Mastroeni, G., Yao, J.C.: On maximum and variational principles via image space analysis. Positivity (2012). doi: 10.1007/s11117-012-0160-1 MathSciNetMATHGoogle Scholar
  12. 12.
    Mastroeni, G.: Some applications of the image space analysis to the duality theory for constrained extremum problems. J. Glob. Optim. 46, 603–614 (2010) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mastroeni, G.: Nonlinear separation in the image space with applications to penalty methods. Appl. Anal. (2012). doi: 10.1080/00036811.2011.614603 MathSciNetGoogle Scholar
  14. 14.
    Mastroeni, G., Pappalardo, M., Yen, N.D.: Image of a parametric optimization problem and continuity of the perturbation function. J. Optim. Theory Appl. 81, 193–202 (1994) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Pappalardo, M.: Image space approach to penalty methods. J. Optim. Theory Appl. 64, 141–152 (1990) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Penot, J.P.: Image space approach and subdifferentials of integral functionals. Optimization 60, 69–87 (2011) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sun, X.L., Li, D., McKinnon, K.: On saddle points of augmented Lagrangians for constrained nonconvex optimization. SIAM J. Optim. 15, 1128–1146 (2005) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yang, X.Q., Huang, X.X.: A nonlinear Lagrangian approach to constrained optimization problems. SIAM J. Optim. 11, 1119–1144 (2001) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) MATHGoogle Scholar
  20. 20.
    Guu, S.M., Huang, N.J., Li, J.: Scalarization approaches for set-valued vector optimization problems and vector variational inequalities. J. Math. Anal. Appl. 356, 564–576 (2009) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Giannessi, F.: Theorem of alternative, quadratic programs, and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.) Variational Inequality and Complementarity Problems, pp. 151–186. Wiley, Chichester (1980) Google Scholar
  22. 22.
    Breckner, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4, 109–127 (1997) MathSciNetMATHGoogle Scholar
  23. 23.
    Luc, D.T.: Theory of Vector Optimization. Springer, Berlin (1989) CrossRefGoogle Scholar
  24. 24.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998) CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Mathematics and InformationChina West Normal UniversityNanchongChina

Personalised recommendations