Limit Behavior of Reachable Sets of Linear Time-Invariant Systems with Integral Bounds on Control

  • Elena Goncharova
  • Alexander Ovseevich


In this paper, a linear dynamic system is considered under L p -constraint on control. We establish the existence of the limit shape of reachable sets as time goes to infinity. Asymptotic formulas are obtained for reachable sets and their shapes. The results throw a bridge between the cases of geometric bounds on control and constraints on the total impulse of control, and create a unified picture of the structure of the limit shapes of reachable sets.


Linear control systems Reachable sets Shapes of convex bodies 


  1. 1.
    Ovseevich, A.I.: Asymptotic behaviour of attainable and superattainable sets. In: Proceedings of the Conference on Modeling, Estimation and Filtering of Systems with Uncertainty, Sopron, Hungary, 1990. Birkhaüser, Basel (1991) Google Scholar
  2. 2.
    Goncharova, E.V., Ovseevich, A.I.: Asymptotics of reachable sets of linear dynamical systems with impulsive control. J. Comput. Syst. Sci. Int. 46(1), 46–55 (2007) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Figurina, T.Y., Ovseevich, A.I.: Asymptotic behavior of attainable sets of linear periodic control systems. J. Optim. Theory Appl. 100(2), 349–364 (1999) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Goncharova, E., Ovseevich, A.: Asymptotics for shapes of singularly perturbed reachable sets. SIAM J. Control Optim. 49(2), 403–419 (2011) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Protasov, V.Y.: The generalized joint spectral radius. A geometric approach. Izv. Math. 61(5), 995–1030 (1997) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1993) MATHCrossRefGoogle Scholar
  7. 7.
    Lutwak, E.: The Brunn–Minkowski–Firey theory I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993) MathSciNetMATHGoogle Scholar
  8. 8.
    Firey, W.J.: Some applications of means of convex bodies. Pac. J. Math. 14(1), 53–60 (1964) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dontchev, A.L., Veliov, V.M.: On the behaviour of solutions of linear autonomous differential inclusions at infinity. C. R. Acad. Bulg. Sci. 36, 1021–1024 (1983) MathSciNetMATHGoogle Scholar
  10. 10.
    Dontchev, A.L., Veliov, V.M.: Singular perturbation in Mayer’s problem for linear systems. SIAM J. Control Optim. 21, 566–581 (1983) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1989) CrossRefGoogle Scholar
  12. 12.
    Weyl, H.: Mean motion. Am. J. Math. 60, 889–896 (1938) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Weyl, H.: Mean motion. Am. J. Math. 1, 143–148 (1939) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute for System Dynamics and Control TheorySiberian Branch of the Russian Academy of SciencesIrkutskRussia
  2. 2.Institute for Problems in Mechanics of the Russian Academy of SciencesMoscowRussia

Personalised recommendations