An Alternating Direction Method for Nash Equilibrium of Two-Person Games with Alternating Offers

  • Zheng Peng
  • Wenxing Zhu


In this paper, we propose a method for finding a Nash equilibrium of two-person games with alternating offers. The proposed method is referred to as the inexact proximal alternating direction method. In this method, the idea of alternating direction method simulates alternating offers in the game, while the inexact solutions of subproblems can be matched to the assumptions of incomplete information and bounded individual rationality in practice. The convergence of the proposed method is proved under some suitable conditions. Numerical tests show that the proposed method is competitive to the state-of-the-art algorithms.


Computational game theory Nash equilibrium Inexact proximal point method Alternating direction method 



This work was supported by the Natural Science Foundation of China (61170308), the Natural Science Foundation of FuJian Province (2011J01008), and FuJian Province Education Department (JA11033). The authors are very grateful to the editor and two anonymous referees for their constructive comments which helped improving the quality of the manuscript greatly.


  1. 1.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior (sixtieth Anniversary edition). Princeton University Press, Princeton (2004) Google Scholar
  2. 2.
    Osborne, M.J., Rubinstein, A. (eds.): A Course in Game Theory. MIT Press, London (1994) MATHGoogle Scholar
  3. 3.
    McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. In: Amman, H., Kendrick, D., Rust, J. (eds.) Handbook of Computational Economics, vol. 1, pp. 87–142. Elsevier, Amsterdam (2000) Google Scholar
  4. 4.
    von Stengel, B.: Computing equilibria for two-person games. In: Aumann, R., Hart, S. (eds.) Handbook of Game Theory, vol. 3, pp. 1723–1759. North-Holland, Amsterdam (2002) Google Scholar
  5. 5.
    Antipin, A.: Extra-proximal methods for solving two-person nonzero-sum games. Math. Program., Ser. B 120, 147–177 (2009) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Orbay, H.: Computing Cournot equilibrium through maximization over prices. Econ. Lett. 105, 71–73 (2009) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Yuan, Y.X.: A trust region algorithm for Nash equilibrium problems. Pac. J. Optim. 7(1), 125–138 (2010) Google Scholar
  8. 8.
    Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Zhang, J.Z., Qu, B., Xiu, N.H.: Some projection-like methods for the generalized Nash equilibria. Comput. Optim. Appl. 45, 89–109 (2010) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Han, D.R., Zhang, H.C., Qian, G., Xu, L.L.: An improved two-step method for solving generalized Nash equilibrium problems. Eur. J. Oper. Res. 216, 613–623 (2012) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Xu, L.L., Han, D.R.: A proximal alternating direction method for weakly coupled variational inequalities. Pac. J. Optim. (2012, to appear) Google Scholar
  12. 12.
    Facchinei, F., Piccialli, V., Sciandrone, M.: Decomposition algorithms for generalized potential games. Comput. Optim. Appl. 50(2), 237–262 (2011) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ray, I., Williams, J.: Locational asymmetry and the potential for cooperation on a canal. J. Dev. Econ. 67, 129–155 (2002) CrossRefGoogle Scholar
  14. 14.
    Hart, S.: Nonzero-sum two-person repeated games with incomplete information. Math. Oper. Res. 10(1), 117–153 (1985) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Diskin, A., Felsenthal, D.: Individual rationality and bargaining. Public Choice 133, 25–29 (2007) CrossRefGoogle Scholar
  16. 16.
    Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    He, B.S., Yang, H., Wang, S.L.: Alternating directions method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl. 106, 337–356 (2000) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Peaceman, D., Racheord, H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955) MATHCrossRefGoogle Scholar
  19. 19.
    Douglas, J.: On the numerical integration of U xx+U yy=U t by implicit methods. J. Soc. Ind. Appl. Math. 3, 42–65 (1955) MATHCrossRefGoogle Scholar
  20. 20.
    Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program., Ser. B 111, 173–199 (2008) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Comput. Optim. Appl. 1, 93–111 (1992) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    He, B.S., Liao, L.Z., Han, D.R., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program., Ser. A 92, 103–118 (2002) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Tseng, P.: Alternating projection-proximal methods for convex programming and variational inequalities. SIAM J. Optim. 7, 951–965 (1997) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Facchinei, F., Fischer, A., Piccialli, V.: Generalized Nash equilibrium problems and Newton methods. Math. Program. 117, 163–194 (2009) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems. SIAM J. Optim. 20, 2228–2253 (2010) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Krawczyk, J., Uryasev, S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5, 63–73 (2000) CrossRefGoogle Scholar
  28. 28.
    De Marco, G., Morgan, J.: Slightly altruistic equilibria. J. Optim. Theory Appl. 137, 347–362 (2008) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.College of Mathematics and Computer ScienceFuzhou UniversityFuzhouChina
  2. 2.Center of Discrete Mathematics and Theoretical Computer ScienceFuzhou UniversityFuzhouChina

Personalised recommendations