New Optimality Conditions for the Semivectorial Bilevel Optimization Problem

  • S. Dempe
  • N. Gadhi
  • A. B. Zemkoho


The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed first-order necessary optimality conditions are then derived in the smooth and nonsmooth settings while using the generalized differentiation calculus of Mordukhovich. Our approach is different from the one previously used in the literature and the conditions obtained are new. Furthermore, they reduce to those of a usual bilevel program, if the lower-level objective function becomes single-valued.


Semivectorial bilevel optimization Multiobjective optimization Weakly efficient solution Optimal value function Optimality conditions 


  1. 1.
    Bonnel, H., Morgan, J.: Semivectorial bilevel optimization problem: penalty approach. J. Optim. Theory Appl. 131, 365–382 (2006) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Zheng, Y., Wan, Z.: A solution method for semivectorial bilevel programming problem via penalty method. J. Appl. Math. Comput. 37, 207–219 (2011) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Eichfelder, G.: Multiobjective bilevel optimization. Math. Program. 123, 419–449 (2010) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bonnel, H.: Optimality conditions for the semivectorial bilevel optimization problem. Pac. J. Optim. 2, 447–467 (2006) MathSciNetMATHGoogle Scholar
  5. 5.
    Dempe, S., Dutta, J., Mordukhovich, B.S.: New necessary optimality conditions in optimistic bilevel programming. Optimization 56, 577–604 (2007) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005) MATHGoogle Scholar
  7. 7.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory. II: Applications. Springer, Berlin (2006) Google Scholar
  8. 8.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998) MATHCrossRefGoogle Scholar
  9. 9.
    Henrion, R., Outrata, J.V.: A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258, 110–130 (2001) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Outrata, J.V.: A note on the usage of nondifferentiable exact penalties in some special optimization problems. Kybernetika 24, 251–258 (1988) MathSciNetMATHGoogle Scholar
  11. 11.
    Dempe, S., Zemkoho, A.B.: On the Karush–Kuhn–Tucker reformulation of the bilevel optimization problem. Nonlinear Anal. 75, 1202–1218 (2012) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Mordukhovich, B.S., Outrata, J.V.: Coderivative analysis of quasi-variational inequalities with applications to stability and optimization. SIAM J. Optim. 18, 389–412 (2007) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ye, J.J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22, 977–997 (1997) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bonnel, H., Morgan, J.: Semivectorial bilevel convex optimal control problems: an existence result. Working paper Google Scholar
  15. 15.
    Dempe, S., Zemkoho, A.B.: The generalized Mangasarian–Fromowitz constraint qualification and optimality conditions for bilevel programs. J. Optim. Theory Appl. 148, 433–441 (2011) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mordukhovich, B.S., Nam, M.N., Yen, N.D.: Subgradients of marginal functions in parametric mathematical programming. Math. Program. 116, 369–396 (2009) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Mordukhovich, B.S., Nam, M.N., Phan, H.M.: Variational analysis of marginal function with applications to bilevel programming problems. J. Optim. Theory Appl. 152, 557–586 (2012) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1984) Google Scholar
  19. 19.
    Ye, J.J., Zhu, D.L.: Optimality conditions for bilevel programming problems. Optimization 33, 9–27 (1995). With Erratum in Optimization 39, 361–366 (1997) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Dempe, S., Zemkoho, A.B.: The bilevel programming problem: reformulations, constraint qualifications and optimality conditions. Math. Program. (2012). doi: 10.1007/s10107-011-0508-5 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceTU Bergakademie FreibergFreibergGermany
  2. 2.Department of MathematicsDhar El Mehrez, Sidi Mohamed Ben Abdellah UniversityFesMorocco

Personalised recommendations