Journal of Optimization Theory and Applications

, Volume 154, Issue 2, pp 321–338 | Cite as

Generalized Affine Functions and Generalized Differentials

  • N. T. H. Linh
  • J.-P. Penot


We study some classes of generalized affine functions, using a generalized differential. We study some properties and characterizations of these classes and we devise some characterizations of solution sets of optimization problems involving such functions or functions of related classes.


Colinvex Colinfine Generalized differential Optimization problem Protoconvex function Pseudoconvex function Pseudolinear function Quasiconvex function 


  1. 1.
    Aggarwal, S., Bhatia, S.: Pseudolinearity and efficiency via Dini derivatives. Indian J. Pure Appl. Math. 20(12), 1173–1183 (1989) MathSciNetMATHGoogle Scholar
  2. 2.
    Cambini, A., Martein, L.: Generalized convexity and optimality conditions in scalar and vector optimization. In: Hadjisavvas, N., Komlosi, S., Schaible, S. (eds.) Handbook of Generalized Convexity and Generalized Monotonicity, pp. 151–194. Kluwer Academic, Amsterdam (2005) Google Scholar
  3. 3.
    Chew, K.L., Choo, E.V.: Pseudolinearity and efficiency. Math. Program. 28, 226–239 (1984) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Jeyakumar, V., Yang, X.Q.: On characterizing the solution sets of pseudolinear programs. J. Optim. Theory Appl. 87(3), 747–755 (1995) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Komlosi, S.: First and second characterizations of pseudolinear functions. Eur. J. Oper. Res. 67, 278–286 (1993) MATHCrossRefGoogle Scholar
  6. 6.
    Kortanek, K.O., Evans, J.P.: Pseudoconcave programming and lagrange regularity. Oper. Res. 15(5), 891–892 (1967) MathSciNetGoogle Scholar
  7. 7.
    Kruk, S., Wolkowicz, H.: Pseudolinear programming. SIAM Rev. 41(4), 795–805 (1999) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Linh, N.T.H., Penot, J.-P.: Generalized affine maps and generalized convex functions. Pac. J. Optim. 4(2), 353–380 (2008) MathSciNetMATHGoogle Scholar
  9. 9.
    Penot, J.-P.: Glimpses upon quasiconvex analysis. ESIAM: Proc. 20, 170–194 (2007) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Linh, N.T.H., Penot, J.-P.: Generalized convex functions and generalized differentials. Optim., J. Math. Program. Oper. (2011) doi: 10.1080/02331934.2011.611882 Google Scholar
  11. 11.
    Demyanov, V.F., Rubinov, A.M.: Contructive Nonsmooth Analysis. Verlag Peter Lang, Frankfurt am Main (1995) Google Scholar
  12. 12.
    Jeyakumar, V., Luc, D.T.: Nonsmooth Vector Functions and Continuous Optimization. Springer, Berlin (2007) Google Scholar
  13. 13.
    Penot, J.-P.: Are generalized derivatives useful for generalized convex function. In: Crouzeix, J.-P., Volle, M., Martinez-Legaz, J.-E. (eds.) Generalized Convexity, Generalized Monotonicity, pp. 3–39. Kluwer Academic, Amsterdam (1998) CrossRefGoogle Scholar
  14. 14.
    Aussel, D., Hadjisavvas, N.: On quasimonotone variational inequalities. J. Optim. Theory Appl. 121(2), 445–450 (2004) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bianchi, M., Schaible, S.: An extension of pseudolinear functions and variational inequalities problems. J. Optim. Theory Appl. 104(1), 59–71 (2000) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Bianchi, M., Hadjisavvas, N., Schaible, S.: On pseudomonotone maps T for which −T is also pseudomonotne. J. Convex Anal. 10(1), 149–168 (2003) MathSciNetMATHGoogle Scholar
  17. 17.
    Linh, N.T.H., Penot, J.-P.: Optimality conditions for quasiconvex programming. SIAM J. Optim. 17(2), 500–510 (2006) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Penot, J.-P.: Characterization of solution sets of quasiconvex programs. J. Optim. Theory Appl. 117(3), 627–636 (2003) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Penot, J.-P.: A Lagrangian approach to quasiconvex analysis. J. Optim. Theory Appl. 117(3), 637–647 (2003) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.International University, Vietnam National University at Ho Chi Minh CityHo Chi Minh CityVietnam
  2. 2.Laboratoire J.-L. LionsUniversité Pierre et Marie CurieParisFrance

Personalised recommendations