Skip to main content
Log in

Finite Element Analysis of an Optimal Control Problem in the Coefficients of Time-Harmonic Eddy Current Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with an optimal control problem governed by time-harmonic eddy current equations on a Lipschitz polyhedral domain. The controls are given by scalar functions entering in the coefficients of the curl-curl differential operator in the state equation. We present a mathematical analysis of the optimal control problem, including sensitivity analysis, regularity results, existence of an optimal control, and optimality conditions. Based on these results, we study the finite element analysis of the optimal control problem. Here, the state is discretized by the lowest order edge elements of Nédélec’s first family, and the control is discretized by continuous piecewise linear elements. Our main findings are convergence results of the finite element discretization (without a rate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanese, R., Monk, P.: The inverse source problem for Maxwell’s equations. Inverse Probl. 22, 1023–1035 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alonso, A., Valli, A.: An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput. 68, 607–631 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alonso, A., Valli, A.: Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications. Springer, New York (2010)

    MATH  Google Scholar 

  4. Ammari, H., Buffa, A., Nédélec, J.-C.: A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60, 1805–1823 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. Modél. Math. Anal. Numér. 34, 159–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bossavit, A.: Computational Electromagnetism. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  7. Chen, Z., Du, Q., Zou, J.: Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37, 1542–1570 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P. Jr., Zou, J.: Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numer. Math. 82, 193–219 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1998)

    MATH  Google Scholar 

  10. Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. Modél. Math. Anal. Numér. 33, 627–649 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Costabel, M., Dauge, M., Nicaise, S.: Singularities of eddy current problems. Modél. Math. Anal. Numér. 37, 807–831 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hiptmair, R.: Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36, 204–225 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoppe, R.H.W.: Adaptive multigrid and domain decomposition methods in the computation of electromagnetic fields. J. Comput. Appl. Math. 168, 245–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoppe, R.H.W., Schöberl, J.: Convergence of adaptive edge element methods for the 3D eddy currents equations. J. Comput. Math. 27, 657–676 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Monk, P.: Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal. 29, 714–729 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Monk, P.: Finite Element Methods for Maxwell’s Equations. Clarendon, Oxford (2003)

    Book  MATH  Google Scholar 

  18. Nédélec, J.-C.: Mixed finite elements in ℝ3. Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nédélec, J.-C.: A new family of mixed finite elements in ℝ3. Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, New York (2001)

    MATH  Google Scholar 

  21. Neittaanmäki, P., Picard, R.: Error estimates for the finite element approximation to a Maxwell-type boundary value problem. Numer. Funct. Anal. Optim. 2, 267–285 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neittaanmäki, P., Rudnicki, M., Savini, A.: Inverse Problems and Optimal Design in Electricity and Magnetism. Oxford University Press, Oxford (1996)

    Google Scholar 

  23. Romanov, V.G., Kabanikhin, S.I.: Inverse Problems for Maxwell’s Equations. VSP International Science Publishers, Utrecht (1994)

    MATH  Google Scholar 

  24. Banks, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Birkhäuser Boston, Cambridge (1989)

    Book  MATH  Google Scholar 

  25. Chen, Z., Zou, J.: An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems. SIAM J. Control Optim. 37, 892–910 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Falk, R.S.: Error estimates for the numerical identification of a variable coefficient. Math. Comput. 40, 537–546 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ito, K., Kunisch, K.: The augmented Lagrangian method for parameter estimation in elliptic systems. SIAM J. Control Optim. 28, 113–136 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  29. Rannacher, R., Vexler, B.: A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44, 1844–1863 (2005)

    Article  MathSciNet  Google Scholar 

  30. Casas, E.: Optimal control in coefficients of elliptic equations with state constraints. Appl. Math. Optim. 26, 21–37 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Druet, P.-E., Klein, O., Sprekels, J., Tröltzsch, F., Yousept, I.: Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects. SIAM J. Control Optim. 49, 1707–1736 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tröltzsch, F., Yousept, I.: PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages. ESAIM: Math. Model. Numer. Anal. 46, 709–729 (2012)

    Article  MathSciNet  Google Scholar 

  33. Yousept, I.: Optimal control of a nonlinear coupled electromagnetic induction heating system with pointwise state constraints. Ann. Acad. Romanian Sci. Ser. Math. Appl. 2, 45–77 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Yousept, I.: Optimal control of Maxwell’s equations with regularized state constraints. Comput. Optim. Appl. (2011). doi:10.1007/s10589-011-9422-2

    MATH  Google Scholar 

  35. Kolmbauer, M., Langer, U.: A robust preconditioned-MinRes-solver for distributed time-periodic eddy current optimal control problems. DK-report No. 2011-07, JKU, Linz (2011)

  36. Wellander, N., Kristensson, G.: Homogenization of the Maxwell equations at fixed frequency. SIAM J. Appl. Math. 64, 170–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Adams, R.A.: Sobolev Spaces. Academic Press, Boston (1978)

    Google Scholar 

  38. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Am. Math. Soc., Providence (2010)

    MATH  Google Scholar 

  40. Carstensen, C.: Quasi-interpolation and a posteriori error analysis in finite element method. Modél. Math. Anal. Numér. 33, 1187–1202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. De Los Reyes, J.C., Meyer, C., Vexler, B.: Finite element error analysis for state-constrained optimal control of the stokes equations. Control Cybern. 37, 251–284 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irwin Yousept.

Additional information

Communicated by Boris Vexler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousept, I. Finite Element Analysis of an Optimal Control Problem in the Coefficients of Time-Harmonic Eddy Current Equations. J Optim Theory Appl 154, 879–903 (2012). https://doi.org/10.1007/s10957-012-0040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0040-7

Keywords

Navigation