Journal of Optimization Theory and Applications

, Volume 155, Issue 1, pp 315–324 | Cite as

Differential Evolution with Wavelet Mutation in Digital Finite Impulse Response Filter Design

  • Sangeeta Mondal
  • Sakti Prasad Ghoshal
  • Rajib Kar
  • Durbadal Mandal


This paper proposes one novel algorithm called differential evolution with wavelet mutation for the optimal design of linear phase finite impulse response filters. For comparative performance study, the Parks–McClellan algorithm and some evolutionary algorithms like the real coded genetic algorithm, conventional particle swarm optimization, and conventional differential evolution have also been applied.


Finite impulse response filter Differential evolution with wavelet mutation Optimization Signal processing 


  1. 1.
    Parks, T.W., McClellan, J.H.: Chebyshev approximation for non recursive digital filters with linear phase. IEEE Trans. Circuits Theory CT-19, 189–194 (1972) CrossRefGoogle Scholar
  2. 2.
    McClellan, J.H., Parks, T.W., Rabiner, L.R.: A computer program for designing optimum FIR linear phase digital filters. IEEE Trans. Audio Electroacoust. AU-21, 506–526 (1973) CrossRefGoogle Scholar
  3. 3.
    Ciloglu, T.: An efficient local search method guided by gradient information for discrete coefficient FIR filter design. Signal Process. 82(10), 1337–1350 (2002) MATHCrossRefGoogle Scholar
  4. 4.
    Mastorakis, N.E., Gonos, I.F., Swamy, M.N.S.: Design of two dimensional recursive filters using genetic algorithms. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50, 634–639 (2003) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mandal, S., Ghoshal, S.P., Kar, R., Mandal, D.: Optimal linear phase FIR band pass filter design using craziness based particle swarm optimization algorithm. J. Shanghai Jiaotong Univ., Sci. 16(6), 696–703 (2011) CrossRefGoogle Scholar
  6. 6.
    Mandal, S., Ghoshal, S.P., Kar, R., Mandal, D.: Design of optimal linear phase FIR high pass filter using craziness based particle swarm optimization technique. J. King Saud Univ, Comput. Inf. Sci. (2011). doi: 10.1016/j.jksuci.2011.10.007 Google Scholar
  7. 7.
    Karaboga, N., Cetinkaya, B.: Design of digital FIR filters using differential evolution algorithm. Circuits Syst. Signal Process. 25(5), 649–660 (2006) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Liu, G., Li, Y.X., He, G.: Design of digital FIR filters using differential evolution algorithm based on reserved gene. In: IEEE Congress on Evolutionary Computation, pp. 1–7 (2010) Google Scholar
  9. 9.
    Pan, S.T.: Evolutionary computation on programmable robust IIR filter pole-placement design. IEEE Trans. Instrum. Meas. 60(4), 1469–1479 (2011) CrossRefGoogle Scholar
  10. 10.
    Najjarzadeh, M., Ayatollahi, A.: FIR digital filters design: particle swarm optimization utilizing LMS and minimax strategies. In: IEEE International Symp. on Signal Proc. and Information Tech, pp. 129–132 (2008) Google Scholar
  11. 11.
    Ababneh, J.I., Bataineh, M.H.: Linear phase FIR filter design using particle swarm optimization and genetic algorithms. Digit. Signal Process. 18(4), 657–668 (2008) CrossRefGoogle Scholar
  12. 12.
    Luitel, B., Venayagamoorthy, G.K.: Particle swarm optimization with quantum infusion for system identification. Eng. Appl. Artif. Intell. 23(5), 635–649 (2010) CrossRefGoogle Scholar
  13. 13.
    Sarangi, A., Mahapatra, R.K., Panigrahi, S.P.: DEPSO and PSO-QI in digital filter design. Expert Syst. Appl. 38(9), 10966–10973 (2011) CrossRefGoogle Scholar
  14. 14.
    Rashedi, E., Hossien, N., Saryazdi, S.: Filter modelling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011) CrossRefGoogle Scholar
  15. 15.
    Dai, C., Chen, W., Zhu, Y.: Seeker optimization algorithm for digital IIR filter design. IEEE Trans. Ind. Electron. 57(5), 1710–1718 (2010) CrossRefGoogle Scholar
  16. 16.
    Luitel, B., Venayagamoorthy, G.K.: Differential evolution particle swarm optimization for digital filter design. In: IEEE Congress on Evolutionary Computation. CEC 2008, pp. 3954–3961 (2008) Google Scholar
  17. 17.
    Hime, A., Oliveira, Jr., Petraglia, A., Petraglia, M.R.: Frequency domain FIR filter design using fuzzy adaptive simulated annealing. Circuits Syst. Signal Process. 28, 899–911 (2009) MATHCrossRefGoogle Scholar
  18. 18.
    Daubechies, I.: The wavelet transform, time frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Mallat, S.G.: A theory for multi-resolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989) MATHCrossRefGoogle Scholar
  20. 20.
    Ling, S.H., Iu, H.H.C., Leung, F.H.F., Chan, K.Y.: Improved hybrid particle swarm optimized wavelet neural network for modelling the development of fluid dispensing for electronic packaging. IEEE Trans. Ind. Electron. 55(9), 3447–3460 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sangeeta Mondal
    • 1
  • Sakti Prasad Ghoshal
    • 1
  • Rajib Kar
    • 2
  • Durbadal Mandal
    • 2
  1. 1.Dept. of Electrical Engg.NIT DurgapurDurgapurIndia
  2. 2.Dept. of Electronics and Communication Engg.NIT DurgapurDurgapurIndia

Personalised recommendations