Siting and Sizing of Facilities under Probabilistic Demands

  • Luís M. Fernandes
  • Joaquim J. Júdice
  • Hanif D. Sherali
  • António P. Antunes


In this paper a discrete location model for non-essential service facilities planning is described, which seeks the number, location, and size of facilities, that maximizes the total expected demand attracted by the facilities. It is assumed that the demand for service is sensitive to the distance from facilities and to their size. It is also assumed that facilities must satisfy a threshold level of demand (facilities are not economically viable below that level). A Mixed-Integer Nonlinear Programming (MINLP) model is proposed for this problem. A branch-and-bound algorithm is designed for solving this MINLP and its convergence to a global minimum is established. A finite procedure is also introduced to find a feasible solution for the MINLP that reduces the overall search in the binary tree generated by the branch-and-bound algorithm. Some numerical results using a GAMS/MINOS implementation of the algorithm are reported to illustrate its efficacy and efficiency in practice.


Facility location models Mixed-integer nonlinear programming Discrete optimization Global optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daskin, M.: Network and Discrete Location: Models, Algorithms and Applications. Wiley, New York (1995) MATHGoogle Scholar
  2. 2.
    Current, J.D.M., Schilling, D.: Discrete network location models. Facility Location: Applications and Theory, pp. 81–118 (2002) Google Scholar
  3. 3.
    Holmberg, K.: Facility location problems with spatial interaction. In: Floudas, Pardalos (eds.) Encyclopedia of Optimization, 2nd edn., pp. 982–989. Springer, Berlin (2009) CrossRefGoogle Scholar
  4. 4.
    ReVelle, C., Eiselt, H.: Location analysis: a synthesis and survey. Eur. J. Oper. Res. 165(1), 1–19 (2005) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Tuy, H.: Global optimization in location problems. In: Floudas, Pardalos (eds.) Encyclopedia of Optimization, 2nd edn., pp. 1354–1359. Springer, Berlin (2009), CrossRefGoogle Scholar
  6. 6.
    Krarup, J., Pruzan, P.M.: Simple plant location problem: survey and synthesis. Eur. J. Oper. Res. 12(1), 36–81 (1983) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Mirchandani, P.: The p-median problem and generalizations. Discrete Location Theory 1, 55–117 (1990) Google Scholar
  8. 8.
    Perl, J., Ho, P.: Public facilities location under elastic demand. Transp. Sci. 24(2), 117–136 (1990) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    OKelly, M.: Spatial interaction based location-allocation models. Spatial analysis and location-allocation models, pp. 302–326 (1987) Google Scholar
  10. 10.
    Eiselt, H., Laporte, G.: The maximum capture problem in a weighted network. J. Reg. Sci. 29(3), 433–439 (1989) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Plastria, F., Carrizosa, E.: Optimal location and design of a competitive facility. Math. Program. 100(2), 247–265 (2004) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Berman, O., Krass, D.: Locating multiple competitive facilities: spatial interaction models with variable expenditures. Ann. Oper. Res. 111(1), 197–225 (2002) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Aboolian, R., Berman, O., Krass, D.: Competitive facility location and design problem. Eur. J. Oper. Res. 182(1), 40–62 (2007) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Sahinidis, N., Tawarmalani, M.: BARON: The GAMS Solver Manual. GAMS Development Corporation, Washington, DC, pp. 9–20 (2004) Google Scholar
  15. 15.
    Cascetta, E.: Transportation Systems Analysis: Models and Applications, 2nd edn. Springer, Berlin (2009) CrossRefMATHGoogle Scholar
  16. 16.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley-Interscience New York (2006) MATHGoogle Scholar
  17. 17.
    Murtagh, B., Saunders, M., Murray, W., Gill, P., Raman, R., Kalvelagen, E.: MINOS-NLP. Systems Optimization Laboratory, Stanford University, Palo Alto, CA Google Scholar
  18. 18.
    Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS—a user’s guide. GAMS Development Corporation (1998) Google Scholar
  19. 19.
    CPLEX, I.: 11.0 Users Manual. ILOG SA, Gentilly, France (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Luís M. Fernandes
    • 1
  • Joaquim J. Júdice
    • 2
  • Hanif D. Sherali
    • 3
  • António P. Antunes
    • 4
  1. 1.Instituto Politécnico de Tomar and Instituto de TelecomunicaçõesTomarPortugal
  2. 2.Departamento de MatemáticaUniversidade de Coimbra and Instituto de TelecomunicaçõesCoimbraPortugal
  3. 3.Grado Department of Industrial & Systems EngineeringVirginia Polytechnic Institute & State UniversityBlacksburgUSA
  4. 4.Departamento de Engenharia CivilUniversidade de CoimbraCoimbraPortugal

Personalised recommendations