Advertisement

Journal of Optimization Theory and Applications

, Volume 147, Issue 2, pp 298–317 | Cite as

Synchronization Criterion for Lur’e Systems via Delayed PD Controller

  • D. H. Ji
  • Ju H. Park
  • S. M. Lee
  • J. H. Koo
  • S. C. Won
Article

Abstract

In this paper, the effects of a time varying delay on a chaotic drive-response synchronization are considered. Using a delayed feedback proportional-derivative (PD) controller scheme, a delay-dependent synchronization criterion is derived for chaotic systems represented by the Lur’e system with sector and slope restricted nonlinearities. The derived criterion is a sufficient condition for the absolute stability of the error dynamics between the drive and the response systems. By the use of a convex representation of the nonlinearity and the discretized Lyapunov-Krasovskii functional, stability condition is obtained via the LMI formulation. The condition represented in the terms of linear matrix inequalities (LMIs) can be solved by the application of convex optimization algorithms. The effectiveness of the work is verified through numerical examples.

Keywords

Lur’e systems Synchronization Absolute stability PD controller LMIs Convex optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Udwadia, F.E., Weber, H.I., Leitmann, G.: Dynamical Systems and Control. Chapman & Hall/CRC, London (2004) MATHGoogle Scholar
  2. 2.
    Leitmann, G., Udwadia, F.E., Kryazhimskii, A.V.: Dynamics and Control. CRC Press, Boca Raton (1999) MATHGoogle Scholar
  3. 3.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) CrossRefMathSciNetGoogle Scholar
  4. 4.
    Lee, S.M., Kwon, O.M., Park, J.H.: Delay-independent absolute stability for time-delay Lur’e systems with sector and slope restricted nonlinearities. Phys. Lett. A 372, 4010–4015 (2008) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Phohomsiri, P., Udwadia, F.E., Von Bremmen, H.: Time-delayed positive velocity feedback control design for active control of structures. J. Eng. Mech. 132, 690–703 (2006) CrossRefGoogle Scholar
  6. 6.
    Udwadia, F.E., Hosseini, M.A.M., Chen, Y.H.: Robust control of uncertain systems with time varying delays in control input. In: Proceedings of the American Control Conference, Albuquerque, New Mexico, pp. 3641–3644 (1997) Google Scholar
  7. 7.
    Park, J.H., Won, S.: A note on stability of neutral delay-differential systems. J. Franklin Inst. 336, 543–548 (1999) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Park, J.H., Won, S.: Asymptotic stability of neutral systems with multiple delays. J. Optim. Theory Appl. 103, 183–200 (1999) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chen, H.F., Liu, J.M.: Open-loop chaotic synchronization of injection-locked semiconductor lasers with Gigahertz range modulation. IEEE J. Quantum Electron. 36, 27–34 (2000) CrossRefGoogle Scholar
  10. 10.
    Yalcin, M.E., Suykens, J.A.K., Vandewalle, J.: Drive-response synchronization of Lur’e systems with time-delay. Int. J. Bifur. Chaos 11, 1707–1722 (2001) CrossRefGoogle Scholar
  11. 11.
    Liao, X., Chen, G.: Chaos synchronization of general Lur’e systems via time-delay feedback control. Int. J. Bifurc. Chaos 13, 207–213 (2003) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Wen, G., Wang, Q.G., Lin, C., Han, X., Li, G.: Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays. Chaos Solitons Fractals 29, 1142–1146 (2006) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Huang, H., Li, H.X., Zhong, H.: Drive-response synchronization of general Lur’e systems with time-varying delay and parameter uncertainty. Int. J. Bifurc. Chaos 16, 281–294 (2006) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Han, Q.L.: On designing time-varying delay feedback controllers for drive-response synchronization of Lur’e systems. IEEE Trans. Circuits Syst., I 54, 1573–1583 (2007) CrossRefGoogle Scholar
  15. 15.
    Li, T., Yu, J., Wang, Z.: Delay-range-dependent synchronization criteria for Lur’e systems with delay feedback control. Commun. Nonlinear Sci. Numer. Simul. 14, 1796–1803 (2009) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Jiang, G.P., Zheng, W.X., Chen, G.: Global chaos synchronization with channel time-delay. Chaos Solitons Fractals 20, 267–275 (2004) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Cao, J., Li, H.X., Ho, D.W.C.: Synchronization criteria of Lur’e systems with time-delay feedback control. Chaos Solitons Fractals 23, 1285–1298 (2005) MATHMathSciNetGoogle Scholar
  18. 18.
    Han, Q.L.: New delay-dependent synchronization criteria for Lur’e systems using time delay feedback control. Phys. Lett. A 360, 563–569 (2007) CrossRefGoogle Scholar
  19. 19.
    Souza, F.O., Palhares, R.M., Mendes, E., Torres, L.: Further results on drive-response synchronization of general Lur’e systems with time-varying delay. Int. J. Bifurc. Chaos 18, 187–202 (2008) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Guo, H., Zhong, S., Gao, F.: Design of PD controller for master.slave synchronization of Lur’e systems with time-delay. Appl. Math. Comput. 212, 86–93 (2009) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Gu, K., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Birkhauser, Boston (2003) MATHGoogle Scholar
  22. 22.
    Skelton, R.E., Iwasaki, T., Grigoriadis, K.: A Unified Algebraic Approach to Linear Control Design. Talyor and Francis, London (1997) Google Scholar
  23. 23.
    Boyd, S., Ghaoui, L. El, Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994) MATHGoogle Scholar
  24. 24.
    Huang, H., Cao, J.: Drive-response synchronization of Lur’e systems based on time-varying delay feedback control. Int. J. Bifurc. Chaos 17, 4159–4166 (2007) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Cao, J., Li, H.X., Daniel, W.C.: Ho, Synchronization criteria of Lur’e systems with time-delay feedback control. Chaos Solitons Fractals 23, 1285–1298 (2005) MATHMathSciNetGoogle Scholar
  26. 26.
    Kapitaniak, T., Chua, L.O.: Hyperchotic attractors of unidirectionally coupled Chua’s circuits. Int. J. Bifurc. Chaos 4, 477–482 (1994) MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Yalcin, M.E., Suykens, J.A.K., Vandewalle, J.: Master-slave synchronization of Lur’e systems with time-delay. Int. J. Bifurc. Chaos 11, 1707–1722 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • D. H. Ji
    • 1
  • Ju H. Park
    • 2
  • S. M. Lee
    • 3
  • J. H. Koo
    • 4
  • S. C. Won
    • 4
  1. 1.Digital Media and CommunicationsSamsung ElectronicsSuwonRepublic of Korea
  2. 2.Department of Electrical EngineeringYeungnam UniversityKyongsanRepublic of Korea
  3. 3.School of Electronics EngineeringDaegu UniversityKyongsanRepublic of Korea
  4. 4.Department of Electronic and Electrical EngineeringPOSTECHPohangRepublic of Korea

Personalised recommendations