On Dual Invex Ky Fan Inequalities

  • A. P. Farajzadeh
  • M. A. Noor


In this paper, we obtain some new results for the dual invex Ky Fan inequalities in topological vector spaces. These results can be viewed as an extension and refinement of the previously known results of Noor and others.


Ky Fan inequalities Invex set Invex equilibrium problems Preinvex function Upper sign continuous function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequality, III, pp. 103–113. Academic Press, New York (1972) Google Scholar
  2. 2.
    Brezis, H., Nirenberg, L., Stampacchia, G.: A remark on Ky Fan minimax principle. Bull. Unione Mat. Ital. 6, 129–132 (1972) MathSciNetGoogle Scholar
  3. 3.
    Fan, K.: Some properties of convex sets related to fixed point theorems. Math. Ann. 266, 519–537 (1984) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kalmoun, E.M.: On Ky Fan minimax inequalities, mixed equilibrium problems and hemivariational inequalities. J. Inequal. Pure Appl. Math. 2, 1–13 (2001) MathSciNetGoogle Scholar
  5. 5.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–145 (1994) MATHMathSciNetGoogle Scholar
  6. 6.
    Noor, M.A., Oettli, W.: On general nonlinear complementarity problems and quasi-equilibria. Le Matematiche (Catania) 49, 313–331 (1994) MATHMathSciNetGoogle Scholar
  7. 7.
    Hadjisavvas, N.: Continuity and maximality properties of pseudomonotone operators. J. Convex Anal. 10, 465–475 (2003) MATHMathSciNetGoogle Scholar
  8. 8.
    Iusem, A.N., Sosa, W.: New existence results for equilibrium problems. J. Nonlinear. Anal. 52, 621–635 (2003) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bianchi, M., Pini, R.: Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124, 79–92 (2005) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Noor, M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ben-Israel, A., Mond, B.: What is invexity? J. Aust. Math. Soc. B 28, 1–9 (1986) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Weir, T., Mond, B.: Preinvex functions in multiple-objective optimization. J. Math. Anal. Appl. 136, 29–38 (1988) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hanson, M.A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Noor, M.A., Noor, K.I.: On strongly generalized preinvex functions. J. Inequal. Pure Appl. Math. 6, 1–8 (2005) Google Scholar
  15. 15.
    Noor, M.A.: Invex equilibrium problems. J. Math. Anal. Appl. 302, 463–475 (2005) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tarafdar, E.A.: Fixed point theorem to Fan-Knaster-Kuratowski-Mazurkiewicz’s theorem. J. Math. Anal. Appl. 129, 475–479 (1987) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Farajzadeh, A.P., Zafarani, J.: Equilibrium problems and variational inequalities in topological vector spaces. J. Optim. doi: 10.1080/02331930801951090

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Mathematics DepartmentRazi UniversityKermanshahIran
  2. 2.Research Institute for Fundamental SciencesTabrizIran
  3. 3.Mathematics DepartmentCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations