Advertisement

Journal of Optimization Theory and Applications

, Volume 146, Issue 2, pp 233–254 | Cite as

Collision Avoidance for an Aircraft in Abort Landing: Trajectory Optimization and Guidance

  • A. Miele
  • T. Wang
  • J. A. Mathwig
  • M. Ciarcià
Article

Abstract

For a host aircraft in the abort landing mode under emergency conditions, the best strategy for collision avoidance is to maximize wrt to the controls the timewise minimum distance between the host aircraft and an intruder aircraft. This leads to a maximin problem or Chebyshev problem of optimal control. At the maximin point of the encounter, the distance between the two aircraft has a minimum wrt the time; its time derivative vanishes and this occurs when the relative position vector is orthogonal to the relative velocity vector. By using the zero derivative condition as an inner boundary condition, the one-subarc Chebyshev problem can be converted into a two-subarc Bolza-Pontryagin problem, which in turn can be solved via the multiple-subarc sequential gradient-restoration algorithm.

Optimal Trajectory. In the avoidance phase, maximum angle of attack is used by the host aircraft until the minimum distance point is reached. In the recovery phase, the host aircraft completes the transition of the angle of attack from the maximum value to that required for quasisteady ascending flight.

Guidance Trajectory. Because the optimal trajectory is not suitable for real-time implementation, a guidance scheme is developed such that it approximates the optimal trajectory results in real time. In the avoidance phase, the guidance scheme employs the same control history (maximum angle of attack) as that of the optimal trajectory so as to achieve the goal of maximizing wrt the control the timewise minimum distance. In the recovery phase, the guidance scheme employs a time-explicit cubic control law so as to achieve the goal of recovering the quasisteady ascending flight state at the final time.

Numerical results for both the optimal trajectory and the guidance trajectory complete the paper.

Keywords

Collision avoidance Abort landing Aerospace engineering Optimal control Guidance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miele, A., Wang, T., Mathwig, J.A.: Optimal collision avoidance trajectory for an aircraft in abort landing. Rice University, Aero-Astronautics Report No. 353 (2005) Google Scholar
  2. 2.
    Miele, A., Wang, T., Mathwig, J.A.: Guidance scheme approximating the optimal collision avoidance trajectory for an aircraft in abort landing. Rice University, Aero-Astronautics Report No. 354 (2005) Google Scholar
  3. 3.
    Miele, A., Ciarcià, M.: Time-explicit cubic guidance scheme for an aircraft in abort landing. Rice University, Aero-Astronautics Report No. 366 (2009) Google Scholar
  4. 4.
    Raghunathan, A.U., Gopal, V., Subramanian, D., Biegler, L.T., Samad, T.: Dynamic optimization strategies for three-dimensional conflict resolution of multiple aircraft. J. Guid. Control Dyn. 27(4), 586–594 (2004) CrossRefGoogle Scholar
  5. 5.
    Hu, J., Prandini, M., Sastry, S.: Optimal coordinated maneuvers for three-dimensional aircraft conflict resolution. J. Guid. Control Dyn. 25(5), 888–900 (2002) CrossRefGoogle Scholar
  6. 6.
    Frazzoli, E., Mao, Z.H., Oh, J.H., Feron, E.: Resolution of conflicts involving many aircraft via semidefinite programming. J. Guid. Control Dyn. 24(1), 79–86 (2001) CrossRefGoogle Scholar
  7. 7.
    Menon, P.K., Sweriduk, G.D., Sridhar, B.: Optimal strategies for free-flight air traffic conflict resolution. J. Guid. Control Dyn. 22(2), 202–211 (1999) CrossRefGoogle Scholar
  8. 8.
    Clements, J.C.: The optimal control of collision-avoidance trajectories in air-traffic management. Transp. Res. B 33(4), 265–280 (1999) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kuo, V.H., Zhao, Y.J.: Required ranges for conflict resolutions in air traffic management. J. Guid. Control Dyn. 24(2), 237–245 (2001) CrossRefGoogle Scholar
  10. 10.
    Tornapolskaya, T., Fulton, N.: Optimal cooperative collision avoidance strategies for coplanar encounter: Merz solution revisited. J. Optim. Theory Appl. 140(2), 355–375 (2009) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Tornapolskaya, T., Fulton, N.: Synthesis of optimal control for cooperative collision avoidance for aircraft (ships) with unequal turn capabilities. J. Optim. Theory Appl. 144(2) (2010) Google Scholar
  12. 12.
    Miele, A., Wang, T.: Multiple-subarc sequential gradient-restoration algorithm, Part 1: Algorithm structure. J. Optim. Theory Appl. 116(1), 1–17 (2003) CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Miele, A., Wang, T.: Multiple-subarc sequential gradient-restoration algorithm, Part 2: Application to a multistage launch vehicle design. J. Optim. Theory Appl. 116(1), 19–39 (2003) CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Miele, A., Wang, T.: Maximin approach to the ship collision avoidance problem via multiple-subarc sequential gradient-restoration algorithm. J. Optim. Theory Appl. 124(1), 29–53 (2005) CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Miele, A., Wang, T.: Fundamental properties of optimal orbital transfer. Paper IAC-03-A.7.02, 54th International Astronautical Congress, Bremen, Germany (2003) Google Scholar
  16. 16.
    Miele, A., Wang, T., Williams, P.N.: On feasibility of launch vehicle designs. Appl. Math. Comput. 164(2), 295–312 (2005) CrossRefMATHGoogle Scholar
  17. 17.
    Miele, A., Wang, T., Melvin, W.W.: Optimization and acceleration guidance of flight trajectories in a windshear. J. Guid. Control Dyn. 10(4), 368–377 (1987) CrossRefMATHGoogle Scholar
  18. 18.
    Miele, A., Wang, T., Melvin, W.W., Bowles, R.L.: Gamma guidance schemes for flight in a windshear. J. Guid. Control Dyn. 11(4), 320–327 (1988) CrossRefMATHGoogle Scholar
  19. 19.
    Miele, A., Wang, T., Melvin, W.W.: Penetration landing guidance trajectories in the presence of windshear. J. Guid. Control Dyn. 12(6), 806–814 (1989) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Miele, A., Wang, T., Melvin, W.W., Bowles, R.L.: Acceleration, gamma, and theta guidance for abort landing in a windshear. J. Guid. Control Dyn. 12(6), 815–821 (1989) CrossRefGoogle Scholar
  21. 21.
    Pontani, M.: Differential games treated by a gradient-restoration approach. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering, pp. 379–396. Springer, New York (2009). Chap. 21 CrossRefGoogle Scholar
  22. 22.
    Miele, A., Wang, T., Ciarcià, M.: Optimal collision avoidance trajectory for an aircraft in takeoff. Aero-Astronautics Report 351, Rice University (2005) Google Scholar
  23. 23.
    Miele, A., Wang, T., Ciarcià, M.: Guidance scheme approximating the optimal collision avoidance trajectory for an aircraft in takeoff. Aero-Astronautics Report 352, Rice University (2005) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • A. Miele
    • 1
  • T. Wang
    • 1
  • J. A. Mathwig
    • 2
  • M. Ciarcià
    • 3
  1. 1.Aero-Astronautics GroupRice UniversityHoustonUSA
  2. 2.PROS Revenue ManagementHoustonUSA
  3. 3.Università di PalermoPalermoItaly

Personalised recommendations