Image Space Analysis and Scalarization for ε-Optimization of Multifunctions

  • M. Chinaie
  • J. Zafarani


Vector constrained problems for multifunctions are considered. Under an assumption based on generalized sections of the feasible set, some results in ε-optimization are achieved. In particular, necessary and sufficient conditions for scalarization of ε-optimization for multifunctions are deduced.


C-multifunction Image space analysis Scalarization of vector ε-optimization ε-superefficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proc. Ninth Internat. Math. Programming Sympos., Budapest. Survey of Mathematical Programming, vol. 2, pp. 423–439. North-Holland, Amsterdam (1979) Google Scholar
  2. 2.
    Giannessi, F.: Theorems of the alternative quadratic programs and complementarity. In: Giannessi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, Chichester (1980) Google Scholar
  3. 3.
    Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42, 331–365 (1984) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Dien, P.H., Mastroeni, G., Pappalardo, M., Quang, P.H.: Regularity condition for constrained extreme problems via image space. J. Optim. Theory Appl. 80, 19–37 (1994) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities. In: Giannessi, F. (ed.) Image Space Analysis and Separation. Vector Variational Inequalities and Vector Equilibria. Mathematical Theories. Kluwer, Dordrecht (1999) Google Scholar
  6. 6.
    Chinaie, M., Zafarani, J.: Image space analysis and scalarization of set-valued optimization. J. Optim. Theory Appl. 142, 451–467 (2009) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Giannessi, F.: Constrained Optimization and Image Space Analysis, vol. 1: Separation of Sets and Optimality Conditions. Springer, New York (2005) MATHGoogle Scholar
  8. 8.
    Giannessi, F., Pellegrini, L.: Image space analysis for vector optimization and variational inequalities. In: Scalarization. Combinatorial and Global Optimization. Ser. Appl. Math., vol. 14, pp. 97–110. World Scientific, Singapore (2002) CrossRefGoogle Scholar
  9. 9.
    Kutateladze, S.S.: Convex ε-programming. Sov. Math. Dokl. 20, 391–393 (1979) MATHGoogle Scholar
  10. 10.
    Loridan, P.: ε-solutions in vector minimization problems. J. Optim. Theory Appl. 43, 265–276 (1984) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Nemeth, A.B.: A nonconvex vector minimization problem. Nonlinear Anal. 10, 669–678 (1986) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    White, D.J.: Epsilon efficiency. J. Optim. Theory Appl. 49, 319–337 (1986) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Tanaka, T.: A new approach to approximation of solutions in vector optimization problems. In: Fushimi, M., Tone, K. (eds.) Proceedings of APORS, pp. 494–504. World Scientific, Singapore (1995) Google Scholar
  14. 14.
    Gutiérrez, C., Jiménez, B., Novo, V.: A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim. 17, 688–710 (2006) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gutiérrez, C., Jiménez, B., Novo, V.: A property of efficient and ε-efficient solutions in vector optimization. J. Appl. Math. Lett. 18, 409–414 (2005) MATHCrossRefGoogle Scholar
  16. 16.
    Jahn, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Berlin (2004) MATHGoogle Scholar
  17. 17.
    Benoist, J., Borwein, J.M., Popovici, N.A.: Characterization of quasiconvex vector-valued functions. Proc. Am. Math. Soc. 131, 1109–1113 (2001) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Benoist, J., Popovici, N.: Characterizations of convex and quasiconvex set-valued maps. Math. Methods Oper. Res. 57, 427–435 (2003) MathSciNetMATHGoogle Scholar
  19. 19.
    Hu, R., Fang, Y.P.: Set-valued increasing-along-rays maps and well-posed set-valued star-shaped optimization. J. Math. Anal. Appl. 331, 1371–1383 (2007) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Chen, G.Y., Huang, X.X.: Ekeland’s ε-variational principle for set-valued mappings. Math. Methods Oper. Res. 48, 181–186 (1998) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Jabarootian, T., Zafarani, J.: Characterizations and application of preinvex and prequasiinvex set-valued maps. Taiwan. J. Math. 13, 871–898 (2009) MathSciNetMATHGoogle Scholar
  22. 22.
    Li, T., Xu, Y., Zhu, C.: ε-strictly efficient solutions of vector optimization problems with set-valued maps. Asia-Pac. J. Oper. Res. 24, 841–854 (2007) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IsfahanIsfahanIran
  2. 2.Department of MathematicsSheikhbahaee University and University of IsfahanIsfahanIran

Personalised recommendations