Lipschitz Continuity Results for a Class of Variational Inequalities and Applications: A Geometric Approach



We consider a class of parametric variational inequalities which, under suitable assumptions, admit an equivalent integral formulation. We study the Lipschitz continuity of the solution and treat in detail the case in which the parametric constraint set is a polytope. Finally, the results obtained are applied to the time-dependent traffic equilibrium problem.


Variational inequalities Monotonicity Network equilibrium problems Sensitivity analysis Lipschitz continuity Polytopes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, San Diego (1980) MATHGoogle Scholar
  3. 3.
    Giannessi, F., Maugeri, A. (eds.): Variational Inequalities and Network Equilibrium Problems. Plenum, New York (1995) MATHGoogle Scholar
  4. 4.
    Nagurney, A.: Network Economics: A Variational Inequality Approach. Kluwer Academic, Dordrecht (1993) MATHGoogle Scholar
  5. 5.
    Daniele, P., Maugeri, A., Oettli, W.: Time-dependent traffic equilibria. J. Optim. Theory Appl. 103(3), 543–555 (1999) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Maugeri, A., Scrimali, L.: Global Lipschitz continuity of solutions to parametrized variational inequalities. Boll. Unione Math. Ital. II, 45–69 (2009) MathSciNetGoogle Scholar
  7. 7.
    Yen, N.D.: Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint. Math. Oper. Res. 20, 695–708 (1995) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lu, S.: Sensitivity of static traffic equilibria with perturbation in arc cost function and travel demand. Transp. Sci. 42, 105–123 (2008) CrossRefGoogle Scholar
  9. 9.
    Lu, S., Robinson, S.M.: Variational inequalities over perturbed polyhedral convex sets. Math. Oper. Res. 33, 689–711 (2008) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Falsaperla, P., Raciti, F.: Improved noniterative algorithm for the calculation of the equilibrium in the traffic network problem. J. Optim. Theory Appl. 133, 401–411 (2007) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lu, S., Robinson, S.M.: Normal fans of polyhedral convex sets: structures and connections. Set-Valued Anal. 16, 281–305 (2008) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Zabinsky, Z.B., Smith, R.L., Kristinsdottir, B.P.: Optimal estimation of univariate black-box Lipschitz functions with upper and lower error bounds. Comput. Oper. Res. 30, 1539–1553 (2003) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Baran, I., Demain, E.D., Katz, D.A.: Optimally adaptive integration of univariate Lipschitz functions. Algorithmica 50, 255–278 (2008) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Grünbaum, B.: Convex Polytopes. Springer, New York (2003) Google Scholar
  15. 15.
    Gwinner, J., Raciti, F.: On a class of random variational inequalities on random sets. Numer. Funct. Anal. Optim. 2(5–6), 618–636 (2006) MathSciNetGoogle Scholar
  16. 16.
    Maugeri, A., Raciti, F.: On general infinite dimensional complementarity problems. Optim. Lett. 2, 71–90 (2008) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1998) Google Scholar
  18. 18.
    Smith, M.J.: The existence, uniqueness and stability of traffic equilibrium. Transp. Res. 138, 295–304 (1979) CrossRefGoogle Scholar
  19. 19.
    Dafermos, S.: Traffic equilibrium and variational inequalities. Transp. Sci. 14, 42–54 (1980) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations