Characterizations of r-Convex Functions

  • Y. X. Zhao
  • S. Y. Wang
  • L. Coladas Uria


This paper discusses some properties of r-convexity and its relations with some other types of convexity. A characterization of convex functions in terms of r-convexity is given without assuming differentiability. The concept of strict r-convexity is introduced. For a twice continuously differentiable function f, it is shown that the strict r-convexity of f is equivalent to a certain condition on 2 f. Further, it is shown that this condition is satisfied by quasiconvex functions satisfying a less stringent condition.


Strict r-convexity r-convexity Positive-semidefinite matrices Positive-definite matrices Convex functions Quasiconvex functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klinger, A., Mangasarian, O.L.: Logarithmic convexity and geometric programming. J. Math. Anal. Appl. 24, 388–408 (1968) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Antczak, T.: (p,r)-invex sets and functions. J. Math. Anal. Appl. 263, 355–379 (2001) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Luo, H.Z., Xu, Z.K.: Note on characterizations of prequasi-invex functions. J. Optim. Theory Appl. 120, 429–439 (2004) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hai, N.N., Phu, H.X.: Symmetrically γ-convex functions. Optimization 46, 1–23 (1999) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ponstein, J.: Seven kinds of convexity. SIAM Rev. 9, 115–119 (1967) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Avriel, M.: r-convex functions. Math. Program. 2, 309–323 (1972) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bullen, P.S.: A criterion for n-convexity. Pac. J. Math. 36, 81–98 (1971) MATHMathSciNetGoogle Scholar
  8. 8.
    Phu, H.X.: Some properties of globally δ-convex functions. Optimization 35, 23–41 (1995) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Phu, H.X., Hai, N.N.: Some analytical properties of γ-convex functions on the real line. J. Optim. Theory Appl. 91, 671–694 (1996) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York (1973), p. 210 MATHGoogle Scholar
  11. 11.
    Mukherjee, R.N., Keddy, L.V.: Semicontinuity and quasiconvex functions. J. Optim. Theory Appl. 94, 715–720 (1997) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yang, X.M., Yang, X.Q., Teo, K.L.: Characterizations and applications of prequasi-invex functions. J. Optim. Theory Appl. 110, 645–668 (2001) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Yang, X.M., Liu, S.Y.: Three kinds of generalized convexity. J. Optim. Theory Appl. 86, 501–513 (1995) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yang, X.M.: Convexity of semicontinuous functions. Oper. Res. Soc. India 31, 309–317 (1994) MATHGoogle Scholar
  15. 15.
    Galewska, E., Galewski, M.: r-convex transformability in nonlinear programming problems. Comment. Math. Univ. Carol. 46, 555–565 (2005) MATHMathSciNetGoogle Scholar
  16. 16.
    Avriel, M.: Solution of certain nonlinear programs involving r-convex functions. J. Optim. Theory Appl. 11, 159–174 (1973) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Avriel, M.: Nonlinear Programming: Analysis and Methods, pp. 163 and 173, Prentice-Hall, Englewood Cliffs (1976) (in Chinese) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Systems Science, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.Department of Statistics and Operations Research, Faculty of MathematicsSantiago de Compostela UniversitySantiago de CompostelaSpain

Personalised recommendations