Solvability for Impulsive Neutral Integro-Differential Equations with State-Dependent Delay via Fractional Operators

  • Y. K. Chang
  • W. S. Li


This paper is mainly concerned with the existence of mild solutions for a first-order impulsive neutral integro-differential equation with state-dependent delay. We assume that the undelayed part generates an analytic resolvent operator and transforms it into an integral equation. By using a fixed-point theorem for condensing maps combined with theories of analytic resolvent operators, we prove some existence theorems. As an application of these main theorems, some practical consequences are derived.


Impulsive differential equations Neutral integro-differential equations State-dependent delays Analytic resolvents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, Y.K., Nieto, J.J.: Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators. Numer. Funct. Anal. Optim. 30, 227–244 (2009) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fu, X., Ezzinbi, K.: Existence of solutions for neutral functional differential evolution equations with nonlocal conditions. Nonlinear Anal. 54, 215–227 (2003) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hernández, E.: Existence results for partial neutral integrodifferential equations with unbounded delay. J. Math. Anal. Appl. 292, 194–210 (2004) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hernández, E., McKibben, M.A.: On state-dependent delay partial neutral functional-differential equations. Appl. Math. Comput. 186, 294–301 (2007) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hernández, E., McKibben, M.A., Henríquez, H.R.: Existence results for partial neutral functional differential equations with state-dependent delay. Math. Comput. Model. 49, 1260–1267 (2009) MATHCrossRefGoogle Scholar
  6. 6.
    Xue, X.: Nonlocal nonlinear differential equations with measure of noncompactness in Banach spaces. Nonlinear Anal. 70, 2593–2601 (2009) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wu, J.H.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996) MATHGoogle Scholar
  8. 8.
    Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. Hindawi, New York (2006) MATHCrossRefGoogle Scholar
  9. 9.
    Chang, Y.K., Li, W.T.: Existence results for second order impulsive functional differential inclusions. J. Math. Anal. Appl. 301, 477–490 (2005) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chang, Y.K., Li, W.T.: Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions. Math. Comput. Model. 43, 377–384 (2006) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Chang, Y.K., Nieto, J.J., Li, W.S.: On impulsive hyperbolic differential inclusions with nonlocal initial conditions. J. Optim. Theory Appl. 140, 431–442 (2009) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hu, J., Liu, X.: Existence results of impulsive partial neutral integro-differential inclusions with infinity delay. Nonlinear Anal. (2009). doi: 10.1016/ MathSciNetGoogle Scholar
  13. 13.
    Nieto, J.J.: Impulsive resonance periodic problems of first-order. Appl. Math. Lett. 15, 489–493 (2002) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Nieto, J.J., Rodriguez-Lopez, R.: New comparison results for impulsive integro-differential equations and applications. J. Math. Anal. Appl. 328, 1343–1368 (2007) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Nieto, J.J., O’Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal. RWA 10, 680–690 (2009) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhang, H., Chen, L.S., Nieto, J.J.: A delayed epidemic model with stage structure and pulses for management strategy. Nonlinear Anal. RWA 9, 1714–1726 (2008) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Anguraj, A., Mallika Arjunan, M., Hernández, M.: Existence results for an impulsive neutral functional differential equation with state-dependent delay. Appl. Anal. 86, 861–872 (2007) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hernández, E., Prokopczyk, A., Ladeira, L.: A note on partial functional differential equations with state-dependent delay. Nonlinear Anal. RWA 7, 510–519 (2006) MATHCrossRefGoogle Scholar
  19. 19.
    Hernández, E., Pierri, M., Goncalves, G.: Existence results for an impulsive abstract partial differential equation with state-dependent delay. Comput. Math. Appl. 52, 411–420 (2006) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hernández, E., Sakthivel, R., Tanaka Aki, S.: Existence results for impulsive evolution differential equations with state-dependent delay. Electron. J. Differ. Equ. 28, 1–11 (2008) Google Scholar
  21. 21.
    Li, W.S., Chang, Y.K., Nieto, J.J.: Solvability of impulsive neutral evolution differential inclusions with state-dependent delay. Math. Comput. Model. 49, 1920-1927 (2009) MathSciNetGoogle Scholar
  22. 22.
    Yang, Z., Cao, J.: Existence of periodic solutions in neutral state-dependent delayed equations and models. J. Comput. Appl. Math. 174, 179–199 (2005) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Grimmer, R.: Resolvent operators for integral equations in a Banach space. Trans. Am. Math. Soc. 273, 333–349 (1982) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Grimmer, R., Pritchard, A.J.: Analytic resolvent operators for integral equations in a Banach space. J. Differ. Equ. 50, 234–259 (1983) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Oka, H.: Integrated resolvent operators. J. Integral Equ. 7, 193–232 (1995) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Pruss, J.: On resolvent operators for linear integrodifferential equations of Volterra type. J. Integral Equ. 5, 211–236 (1983) MathSciNetGoogle Scholar
  27. 27.
    Sadovskii, B.N.: On a fixed-point principle. Funct. Anal. Appl. 1, 74–76 (1967) MathSciNetGoogle Scholar
  28. 28.
    Marle, C.M.: Mesures et Probabilities. Hermam, Paris (1974) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Mathematics, Physics & Software EngineeringLanzhou Jiaotong UniversityLanzhouChina

Personalised recommendations